

Electronic versions are uncontrolled unless directly accessed from the QA Document Control system.
Printed version are uncontrolled except when stamped with ‘VALID COPY’ in red.

External release of this document may require a NDA.

© INSIDE Secure - 2013 - All rights reserved

MatrixSSL Developer's
Guide

Version 3.7

 2 © INSIDE Secure - 2015 – All rights reserved

TABLE OF CONTENTS

1	
 OVERVIEW .. 4	

1.1 Nomenclature ... 4	

2	
 SECURITY CONSIDERATIONS .. 5	

2.1 SSL/TLS Version Security .. 5	

2.2 Selecting Cipher Suites .. 5	

2.3 Authentication Mode .. 8	

2.4 Authentication and Key Exchange ... 8	

2.4.1 Server and Client Authentication ... 8	

2.4.2 Certificate Validation and Authentication ... 8	

3	
 APPLICATION INTEGRATION FLOW .. 11	

3.1 ssl_t Structure .. 11	

3.2 Initialization .. 11	

3.3 Creating a Session ... 11	

3.4 Handshaking .. 12	

3.5 Communicating Securely With Peers ... 13	

3.5.1 Encrypting Data ... 13	

3.5.2 Decrypting Data ... 13	

3.6 Ending a Session ... 14	

3.7 Closing the Library ... 14	

4	
 CONFIGURABLE FEATURES .. 15	

4.1 Protocol and Performance ... 15	

4.2 Public Key Math Assembly Optimizations .. 16	

4.3 Debug Configuration .. 17	

4.4 Minimum Firmware Configuration .. 17	

5	
 SSL HANDSHAKING .. 18	

5.1 Standard Handshake ... 18	

5.2 Client Authentication Handshake ... 19	

5.3 Session Resumption Handshake ... 20	

5.4 Other Handshakes ... 20	

5.5 Re-Handshakes ... 20	

5.5.1 Disable Re-Handshaking At Runtime .. 21	

5.5.2 The Re-Handshake Credit Mechanism .. 21	

6	
 OPTIONAL FEATURES .. 22	

6.1 Stateless Session Ticket Resumption .. 22	

6.2 Server Name Indication Extension ... 22	

6.3 Maximum Fragment Length ... 23	

6.4 Truncated HMAC ... 23	

6.5 Application Layer Protocol Negotiation Extension ... 23	

6.6 MatrixSSL Statistics Framework .. 25	

 3 © INSIDE Secure - 2015 – All rights reserved

6.7 ZLIB Compression ... 25	

 4 © INSIDE Secure - 2015 – All rights reserved

1 OVERVIEW
This developer’s guide is a general SSL/TLS overview and a MatrixSSL specific integration reference for
adding SSL security into an application.
This document is primarily intended for the software developer performing MatrixSSL integration into their
custom application but is also a useful reference for anybody wishing to learn more about MatrixSSL or the
SSL/TLS protocol in general.
For additional information on the APIs discussed here please see the MatrixSSL API document included in
this package.

1.1 Nomenclature
MatrixSSL supports both the TLS and SSL protocols. Despite the difference in acronym, TLS 1.0 is simply
version 3.1 of SSL. There are no practical security differences between the protocols, and only minor
differences in how they are implemented. It was felt that ‘Transport Layer Security’ was a more appropriate
name than ‘Secure Sockets Layer’ going forward beyond SSL 3.0. In this documentation, the term SSL is
used generically to mean SSL/TLS, and TLS is used to indicate specifically the TLS protocol. SSL 2.0 is
deprecated and not supported. MatrixSSL supports SSL 3.0, TLS 1.0, TLS 1.1 and TLS 1.2 protocols. In
addition, the DTLS protocol is based closely on TLS 1.1 and beyond.

 5 © INSIDE Secure - 2015 – All rights reserved

2 SECURITY CONSIDERATIONS
Prior to working directly with the MatrixSSL library there are some critical SSL security concepts that
application integrators should be familiar with.

2.1 SSL/TLS Version Security
Although TLS 1.0 and above can be considered secure, several weaknesses have been discovered in
some versions and cipher combinations.
All of the issues discovered are mitigated by default in MatrixSSL. Additionally, SSL 3.0 is disabled by
default in MatrixSSL to reduce version downgrade attacks and the padding oracle attack POODLE.

2.2 Selecting Cipher Suites
The strength of the secure communications is primarily determined by the choice of cipher suites that will
be supported. A cipher suite determines how two peers progress through an SSL handshake as well as
how the final application data will be encrypted over the secure connection. The four components of any
given cipher suite are key exchange, authentication, encryption and digest hash.
Key exchange mechanisms refer to how the peers agree upon a common symmetric key that will be used
to encrypt data after handshaking is complete. The two common key exchange algorithms are RSA and
Diffie-Hellman (DH or ECDH). Currently, when Diffie-Hellman is chosen it is used almost exclusively in
ephemeral mode (DHE or ECDHE) in which new private key pairs are generated for each connection to

Vulnerability	
 SSL	
 3.0	
 TLS	
 1.0	
 TLS	
 1.1	
 TLS	
 1.2	
 Fixed	
 Solution	

BEAST Vuln Vuln Ok Ok Yes
USE_BEAST_WORKAROUND enabled by default
http://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack
Some implementations of TLS are not compatible with this workaround.

CRIME Vuln Vuln Vuln Vuln Yes USE_ZLIB_COMPRESSION disabled by default
http://en.wikipedia.org/wiki/CRIME_(security_exploit)

BREACH Vuln Vuln Vuln Vuln Yes Application code should not compress frequently used headers
http://en.wikipedia.org/wiki/BREACH_(security_exploit)

LUCKY13
Padding
Attacks

Vuln Vuln Vuln Vuln Yes
Internal blinding for block cipher padding automatically applied
http://en.wikipedia.org/wiki/Lucky_Thirteen_attack
Applies to block ciphers only.

POODLE Vuln Ok Ok Ok Yes SSL 3.0 disabled by default with DISABLE_SSL3 since version 3.3.1
http://en.wikipedia.org/wiki/POODLE

Renegotiation
Attacks Vuln Vuln Vuln Vuln Yes

REQUIRE_SECURE_REHANDSHAKES enabled by default
http://en.wikipedia.org/wiki/Transport_Layer_Security#Renegotiation_at
tack
Some implementations of TLS are not compatible with this extension

False Start
Weakness Vuln Vuln Vuln Vuln Yes

ENABLE_FALSE_START disabled by default
http://en.wikipedia.org/wiki/Transport_Layer_Security#Version_rollback
_attacks

RC4
Weakness Vuln Less

Vuln
Less
Vuln

Less
Vuln Yes

USE_SSL_RSA_WITH_RC4_128_* disabled by default
Internal code limitations for the number of bytes RC4 will encode
http://en.wikipedia.org/wiki/Transport_Layer_Security#RC4_attacks
SSL 3.0 is more vulnerable because RC4 is more commonly used

3DES
Weakness Vuln Less

Vuln
Less
Vuln

Less
Vuln Yes

USE_SSL_RSA_WITH_3DES_EDE_CBC_SHA disabled by default
http://en.wikipedia.org/wiki/Transport_Layer_Security#RC4_attacks
SSL 3.0 is more vulnerable because 3DES is more commonly used

MD5 MAC
Weakness Vuln Less

Vuln
Less
Vuln

Less
Vuln Yes USE_SSL_RSA_WITH_RC4_128_MD5 disabled by default

All other MD5 based ciphers disabled by default

MD5 Cert
Weakness Vuln Less

Vuln
Less
Vuln

Less
Vuln Yes ENABLE_MD5_SIGNED_CERTS disabled by default

 6 © INSIDE Secure - 2015 – All rights reserved

allow perfect forward secrecy. The trade-off for DHE is a much slower SSL handshake as key generation
is a relatively processor-intensive operation. Some older protocols also specify DH, as it was the first
widely publicized key exchange algorithm. The elliptic curve variations on the Diffie-Hellman algorithms
are denoted ECDH or ECDHE in the cipher suite name.
Authentication algorithms specify how the peers will prove their identities to each other. Authentication
options within cipher suites are RSA, DSA, Elliptic Curve DSA (ECDSA), Pre-shared Key (PSK), or
anonymous if no authentication is required. RSA has the unique property that it can be used for both key
exchange and authentication. For this reason, RSA has become the most widely implemented cipher suite
mechanism for SSL communications. RSA key strengths of between 1024 and 2048 bits are the most
common.
The encryption component of the cipher suite identifies which symmetric cipher is to be used when
exchanging data at the completion of the handshake. The AES block cipher is recommended for new
implementations, and is the most likely to have hardware acceleration support.
Finally, the digest hash is the choice of checksum algorithm used to confirm the integrity of exchanged
data, with SHA-1 being the most common and SHA256 recommended for new implementations. Here is a
selection of cipher suites that illustrate how to identify the four components.

The AES_GCM cipher combines the encryption and digest hash components into a single algorithm so a
dedicated hash algorithm is not used in these suites.

Symmetric Algorithms Supported by MatrixSSL

Hash Algorithms Supported by MatrixSSL

Cipher	
 Suite	
 Key	
 Exchange	
 Auth	
 Type	
 Encryption	
 Digest	
 Hash	

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA RSA 3DES SHA-1

SSL_DH_anon_WITH_RC4_128_MD5 DH Anonymous RC4-128 MD5

TLS_RSA_WITH_AES_128_CBC_SHA RSA RSA AES-128 SHA-1

TLS_DHE_RSA_WITH_AES_256_CBC_SHA DHE RSA AES-256 SHA-1

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA ECDHE RSA AES-128 SHA-1

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA ECDHE ECDSA AES-256 SHA-1

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 ECDH ECDSA AES-128 SHA-256

Algorithm	
 Recommended?	
 Typical	
 Risks	

RC4 No Several known weaknesses. Can be OK for small amounts of data.

3DES No Theoretical weaknesses. AES typically a better candidate.

SEED No Standard usage only in Korea. AES is a better candidate.

AES Yes AES-256 preferred over AES-192 and AES-128. Lucky13 Attack mitigated internally.

AES-GCM Yes AES-256 preferred over AES-192 and AES-128. Lucky13 Attack mitigated internally. Without hardware
acceleration, can be slower than AES-SHA. Risk that an as-yet undiscovered AES attack will
compromise both encryption and record validation.

Algorithm	
 Recommended?	
 Typical	
 Risks	

MD2 No Known weak. Used only for legacy certificate signatures. USE_MD2 disabled by default.

MD4 No Known weak. Used only for legacy certificate signatures. USE_MD4 disabled by default.

MD5 No Proven attacks. SSL 3.0 through TLS 1.1 require MD5 in combination with SHA-1 for their internal
protocol (and therefore are at least as strong as SHA-1). TLS 1.2 does not require MD5. All MD5 based
cipher suites disabled by default. ENABLE_MD5_SIGNED_CERTS disabled by default.

 7 © INSIDE Secure - 2015 – All rights reserved

Key Exchange Algorithms Supported by MatrixSSL

Authentication Methods Supported by MatrixSSL

SHA-1 Yes SHA-1 is widely deployed despite recent collision attacks. Only TLS 1.2 and newly issued certificates
using SHA-2 are able to remove SHA-1 completely from the TLS protocol.

SHA-256 Yes Assumed secure.

SHA-384 Yes Assumed secure.

SHA-512 Yes Assumed secure.

Algorithm	
 Key	
 Size	
 Recommended?	
 Typical	
 Risks	

RSA < 1024 No Weak. Below MIN_RSA_SIZE connections will be refused.

RSA 1024 No In wide usage. Recommended to not use going forward

RSA > 1024 Yes Recommend at least 2048 bit keys.

DH < 1024 No Weak. Below MIN_DH_SIZE connections will be refused.

DH 1024 No In wide usage. Recommended to not use going forward

DH > 1024 Yes Recommend at least 2048 bit DH group.

DHE/ECDHE 1024 / 192 Yes See chart below. Ephemeral cipher suites provide perfect forward secrecy, and are
generally the strongest available, although they are also the slowest performing for
key exchange.

ECC >= 192 Yes 192 bit DH group and above is currently assumed secure. Smaller groups are not
supported in MatrixSSL. Below MIN_ECC_SIZE connections will be refused.

PSK >= 128 Yes* Pre-shared Key ciphers rely on offline key agreement. *They avoid any weaknesses
of Key Exchange Algorithms, however, it is not easy to change keys once they are
installed when used as session keys. When PSK is used only for authentication
(DHE_PSK cipher suites), the session encryption keys are generated each
conncection.

Suite	
 Type	
 Auth	
 Exchange	
 	
 Recommen
ded?	

Typical	
 Risks	

RSA_WITH_NULL RSA - No No encryption. Authentication via RSA. Typically used for debugging
connections only (since

DH_anon - Diffie-
Hellman Yes*

No Authentication. Key exchange only. *If used, authentication MUST be
done by direct comparison of remote DH key ID to trusted key ID, similar to
SSH authentication. If DH key ID authentication is done, this is similar in
strength to DHE_PSK ciphers, although the keys exchanged are not
ephemeral. Authentication to a trusted key ID can mitigate many attacks
related to X.509 PKI infrastructure.

PSK
Pre-

shared
Key

Pre-shared
Key Yes

Pre-shared Keys can be used for authentication, since the same secret
must be shared between client and server. DHE_PSK suites use PSK only
for authentication, while PSK_ suites use PSK for authentication and
session keys. PSK keys are difficult to change in the field, however
authentication with PSK can mitigate many attacks related to X.509 PKI
infrastructure.

RSA RSA RSA Yes

The most commonly used authentication method. Supported by X.509 PKI
infrastructure. Additional security can be had by directly comparing RSA key
IDs to trusted Key Ids (similar to Certificate Pinning). Usually faster than
ECC based authentication.

DHE_RSA RSA
Diffie-

Hellman
Ephemeral

Yes
RSA for authentication, Ephemeral DH for key exchange. Provides Perfect
forward secrecy. http://en.wikipedia.org/wiki/Forward_secrecy

 8 © INSIDE Secure - 2015 – All rights reserved

2.3 Authentication Mode
By default in SSL, it is the server that is authenticated by a client. It is easiest to remember this when
thinking about purchasing a product online with a credit card over an HTTPS (SSL) connection. The client
Web browser must authenticate the server in order to be confident the credit card information is being sent
to a trusted source. This is referred to as one-way authentication or server authentication and is
performed as part of all standard SSL connections (unless, of course, a cipher suite with an authentication
type of anonymous has been agreed upon).
However, in some use-case scenarios the user may require that both peers authenticate each other. This
is referred to as mutual authentication or client authentication. If the project requires client authentication
there is an additional set of key material that must be used to support it as described in the next section.
Client authentication is also done inherently in Pre-shared Key cipher suites, as both sides of a connection
must have a common shared secret.

2.4 Authentication and Key Exchange
2.4.1 Server and Client Authentication
With a cipher suite and authentication mode chosen, the user will need to obtain or generate the
necessary key material for supporting the authentication and key exchange mechanisms. X.509 is the
standard for how key material is stored in certificate files.
The peer that is being authenticated must have a private key and a public certificate. The peer performing
the authentication must have the Certificate Authority (CA) certificate that was used to issue the public
certificate. In the standard one-way authentication scenario this means the server will load a private key
and certificate while the client will load the CA file.
If client authentication is needed the mirror image of CA, certificate, and private key files must also be
used. This chart shows which files clients and server must load when using a standard RSA based cipher
suite such as SSL_RSA_WITH_3DES_EDE_CBC_SHA.

2.4.2 Certificate Validation and Authentication
Authentication in SSL is most often based on X.509 Certificate chain validation.

DHE_PSK PSK
Diffie-

Hellman
Ephemeral

Yes
PSK for authentication, Ephemeral DH for key exchange. Does not rely on
X.509.

ECDH_ECDSA ECC
DSA

ECC Diffie-
Hellman Yes ECC DSA for authentication, ECC for key exchange. Most commonly used

in embedded devices supporting hardware based ECC support.

ECDH_RSA RSA ECC Diffie-
Hellman Yes

ECC key exchange, with RSA authentication. Uses widely deployed X.509
RSA certificate infrastructure, but ECC for key exchange. Not often
deployed due to the implementation having to support ECC and RSA.

ECDHE_ECDSA ECC
DSA

ECC Diffie-
Hellman

Ephemeral
Yes

ECC key exchange with ephemeral keys, ECC DSA authentication. Most
commonly used in embedded devices supporting hardware based ECC
support.

ECDHE_RSA RSA
ECC Diffie-

Hellman
Ephemeral

Yes
Ephemeral counterpart to ECDH_RSA.

Authentication	
 Mode	
 Server	
 Key	
 Files	
 Client	
 Key	
 Files	

One-way server authentication 1. RSA server certificate file
2. RSA private key file for the server
 certificate file

1. Certificate Authority certificate file that
 issued the server certificate

Additions for client authentication 3. Certificate Authority certificate file
 that issued the client certificate

2. RSA client certificate file
3. RSA private key file for the client
 certificate file

 9 © INSIDE Secure - 2015 – All rights reserved

Example list of trusted root certificates loaded by a MatrixSSL client with matrixSslLoadRsaKeys.
https://www.geotrust.com/resources/root-certificates/

Certificate chain sent to a MatrixSSL client during SSL handshake Certificate message by remote server
www.google.com.

Checks that are done on all certificates:

Eq
ui
fa
x	

Ro
ot
	
 Subject:	
 C=US,	
 O=Equifax,	
 OU=Equifax	

Secure	
 Certi8icate	
 Authority	

Authority	
 KeyId:
48:E6:68:F9:2B:D2:B2:95...	
 [Valid,	
 self-­‐
signed	
 OK	
 for	
 root]	

Subject	
 KeyId:	

48:E6:68:F9:2B:D2:B2:95...	

Basic	
 Constraints:	
 critical	
 CA:TRUE	

[Valid,	
 this	
 certi8icate	
 can	
 sign	
 others]	

Key	
 Usage:	
 critical	
 Certi8icate	
 Sign,	
 CRL	

Sign	
 [Valid,	
 able	
 to	
 sign	
 certi8icates]	

Validity:	
 (Aug	
 22	
 16:41:51	
 1998	
 GMT	
 to	

Aug	
 22	
 16:41:51	
 2018	
 GMT)	
 [Valid]	

Te
st
	
 R
oo
t	
 Test	
 CA	
 	

C=US,	
 O=GeoTrust	
 Inc.,	
 CN=GeoTrust	
 Global	
 CA	

• Issuer:	
 C=US,	
 O=Equifax,	
 OU=Equifax	
 Secure	
 Certi8icate	
 Authority	
 [Valid,	
 matches	
 a	

loaded	
 trusted	
 root	
 subject]	

• Authority	
 KeyId:	
 48:E6:68:F9:2B:D2:B2:95...	
 [Valid,	
 matches	
 the	
 Issuer	
 Subject	
 KeyId]	

• Subject	
 KeyId:	
 C0:7A:98:68:8D:89:FB:AB...	

• Basic	
 Constraints:	
 critical	
 CA:TRUE	
 [Valid,	
 this	
 certi8icate	
 can	
 sign	
 others]	

• Key	
 Usage:	
 critical	
 Certi8icate	
 Sign,	
 CRL	
 Sign	
 [Valid,	
 able	
 to	
 sign	
 certi8icates]	

• Validity:	
 (May	
 21	
 04:00:00	
 2002	
 GMT	
 to	
 Aug	
 21	
 04:00:00	
 2018	
 GMT)	
 [Valid]	

C=US,	
 O=Google	
 Inc,	
 CN=Google	
 Internet	
 Authority	
 G2	

• Issuer:	
 C=US,	
 O=GeoTrust	
 Inc.,	
 CN=GeoTrust	
 Global	
 CA	
 [Valid,	
 matches	
 parent	
 subject]	

• Authority	
 KeyId:	
 C0:7A:98:68:8D:89:FB:AB...	
 [Valid,	
 matches	
 the	
 Issuer	
 Subject	
 KeyId]	

• Subject	
 KeyId:	
 4A:DD:06:16:1B:BC:F6:68...	

• Validity:	
 (Apr	
 	
 5	
 15:15:55	
 2013	
 GMT	
 to	
 Apr	
 	
 4	
 15:15:55	
 2015	
 GMT)	
 [Valid]	

• Basic	
 Constraints:	
 critical	
 CA:TRUE,	
 pathlen:0	
 [Valid,	
 this	
 certi8icate	
 can	
 sign	
 others	
 and	
 the	

signed	
 certi8icate	
 is	
 not	
 also	
 a	
 CA]	

• Key	
 Usage:	
 critical	
 Certi8icate	
 Sign,	
 CRL	
 Sign	
 [Valid,	
 able	
 to	
 sign	
 certi8icates]	

• Version:	
 3	
 [Valid]	

C=US,	
 ST=California,	
 L=Mountain	
 View,	
 O=Google	
 Inc,	
 CN=*.google.com	

• Issuer:	
 C=US,	
 O=Google	
 Inc,	
 CN=Google	
 Internet	
 Authority	
 G2	
 [Valid,	
 matches	
 parent	

subject]	

• X509v3	
 Basic	
 Constraints:	
 critical	
 CA:FALSE	
 [Valid,	
 this	
 is	
 a	
 leaf	
 cert]	

• Extended	
 Key	
 Usage:	
 TLS	
 Web	
 Server	
 Authentication,	
 TLS	
 Web	
 Client	
 Authentication	

[Valid]	

• X509v3	
 Subject	
 Alternative	
 Name:	
 DNS:*.google.com,	
 DNS:*.android.com...	
 [Valid,	
 matches	

expected	
 DNS	
 name]	

• Validity:	
 (Mar	
 12	
 09:53:40	
 2014	
 GMT	
 to	
 Jun	
 10	
 00:00:00	
 2014	
 GMT)	
 [Valid]	

 10 © INSIDE Secure - 2015 – All rights reserved

For information on how to create Certificate Authority root and child certificates please see the Matrix Key
and Cert Generation Utilities document.

X.509	
 Field	
 New	
 in	
 3.6	
 Validation	
 Performed	

Version New Must be a version 3 certificate. Prior to 3.6, all certificate versions were accepted.

Serial Used for lookup in a CRL, if USE_CRL defined.

Signature Algorithm RSA or ECDSA algorithms. Must be SHA-1 or SHA-2 based hash. MD2 and MD5 support
for RSA signatures is supported only with custom compile options.

Issuer
In a chain, issuer must match the subject of the immediate (following) parent certificate.
Self-signed certificates (Issuer == Subject) are allowed as loaded root certificates, but not
as part of a chain. Common name must contain only printable characters.

Validity Change

Current date must be within notBefore and notAfter range on all certs in the chain. Time is
not currently validated. On platforms without a date function, the range check is always
flagged as failed and must be handled by the Certificate Validation Callback. Prior to 3.6,
example validation only within the Certificate Validation Callback.

Subject New

Common name must contain only printable characters. Common name will be validated via
full match to expectedName, if provided in matrixSslNewClientSession(). Partial match not
allowed. Wildcard match is allowed for the first segment of a DNS name. Prior to 3.6,
subject validation needed to be done within the Certificate Validation Callback.

Subject Public Key
Info RSA and ECC keys supported. RSA public key modulus must be at least MIN_RSA_SIZE

bits. ECC public key must be at least MIN_ECC_SIZE bits.

Signature The hash of the certificate contents must match the hash that is signed by the Issuer Public
Key.

Basic Constraints Change For Root or intermediate certs, must be marked Critical with CA:TRUE. Path Length
constraints are validated. Prior to 3.6, only CA flag was checked, not path length.

Key Usage New For Root or intermediate certs, must be marked for use as CertificateSign. For CRL checks,
CrlSign flag must be set. Prior to 3.6, Key Usage was not enforced.

Extended Key Usage New If marked Critical, must have “TLS Web Server Authentication” or “TLS Web Client
Authentication” set in the leaf certificate. Prior to 3.6, this extension was not enforced.

Subject Alternative
Name New

If an expectedName is specified in matrixSslNewClientSession() and does not match
Subject Common Name, or any printable Subject Alternative Name of type DNS, Email or
IP, validation will fail. Prior to 3.6, alt subject validation needed to be done within the
Certificate Validation Callback.

Authority Key
Identifier New If specified, the direct Issuer of the certificate must have a defined, matching Subject Key

Identifier. Prior to 3.6 this field was ignored.

Subject Key Identifier New If specified, any direct children of the Issuer must have a defined, matching Authority Key
Identifier. Prior to 3.6 this field was ignored.

CRL Distribution
Points

If USE_CRL is defined, matrixSslGetCRL() will download the CRL files from each URI type
distribution point provided for each trusted root certificate (Note: not intermediate
certificates).

CRL Validation CRL file must be signed by certificate with CrlSign Basic constraints. MD5 signatures not
supported by default.

Unknown Extensions Change
Unknown extensions are ignored, unless flagged as Critical. Validation will fail for any
Critical extension unrecognized by MatrixSSL. Prior to 3.6, unknown critical extensions
were warned, but allowed.

 11 © INSIDE Secure - 2015 – All rights reserved

3 APPLICATION INTEGRATION FLOW
MatrixSSL is a C code library that provides a security layer for client and server applications allowing them
to securely communicate with other SSL enabled peers. MatrixSSL is transport agnostic and can just as
easily integrate with an HTTP server as it could with a device communicating through a serial port. For
simplicity, this developer’s guide will assume a socket-based implementation for all its examples unless
otherwise noted.
The term application in this document refers to the peer (client or server) application the MatrixSSL library
is being integrated into.
This section will detail the specific points in the application life cycle where MatrixSSL should be
integrated. In general, MatrixSSL APIs are used for initialization/cleanup, when new secure connections
are being established (handshaking), and when encrypting/decrypting messages exchanged with peers.
Refer to the MatrixSSL API document to get familiar with the interface to the library and with the example
code to see how they are used at implementation. Follow the guidelines below when using these APIs to
integrate MatrixSSL into an application.

3.1 ssl_t Structure
The ssl_t structure holds the state and keys for each client or server connection as well as buffers for
encoding and decoding SSL data. The buffers are dynamically managed internally to make the integration
with existing non-secure software easier. SSL is a record based protocol, and the internal buffer
management makes a better “impedance match” with classic stream based protocols. For example, data
may be read from a socket, but if a full SSL record has not been received, no data is available for the caller
to process. This partial record is held within the ssl_t buffer. The MatrixSSL API is also designed so
there are no buffer copies, and the caller is able to read and write network data directly into the SSL
buffers, providing a very low memory overhead per session.

3.2 Initialization
MatrixSSL must be initialized as part of the application initialization with a call to matrixSslOpen. This
function sets up the internal structures needed by the library.
In most cases, the application will subsequently load the key material from the file system. RSA or EC
certificates, Diffie-Hellman parameters, and Pre-Shared Keys for the specific peer application must be
parsed before creating a new SSL session. The matrixSslNewKeys function is used to allocate the key
storage and matrixSslLoadRsaKeys, matrixSslLoadEcKeys, matrixSslLoadDhParams, and
matrixSslLoadPsk are used to parse the key material into the sslKeys_t structure during initialization.
The populated key structure will be used as an input parameter to matrixSslNewClientSession or
matrixSslNewServerSession.
The allocation and loading of the sslKeys_t structure is most commonly done a single time at start and
the application uses those keys for each connection. Alternatively, a new sslKeys_t structure can be
allocated once for each secure connection and freed immediately after the connection is closed. This
should be done if the application has multiple certificate files depending on the identity of the connecting
entity or if there is a security concern with keeping the RSA keys in memory for extended periods of time.
Once the application is done with the keys, the associated memory is freed with a call to
matrixSslDeleteKeys.

3.3 Creating a Session
The next MatrixSSL integration point in the application is when a new session is starting. In the case of a
client, this is whenever it chooses to begin one because SSL is a client-initiated protocol (like HTTP). In
the case of a server, a new session should be started when the server accepts an incoming connection
from a client on a secure port. In a socket based application, this would typically happen when the accept
socket call returns with a valid incoming socket. The application sets up a new session with the API
matrixSslNewClientSession or matrixSslNewServerSession. The returned ssl_t context will become
the input parameter for all public APIs that act at a per-session level.

 12 © INSIDE Secure - 2015 – All rights reserved

The required input parameters to the session creation APIs differ based on whether the application is
assuming a server or client role. Both require a populated keys structure (discussed in the previous
section) but a client can also nominate a specific cipher suite or session ID when starting a session. The
ciphers that the server will accept are determined at compile time.
The client should also always nominate a certificate callback function during
matrixSslNewClientSession. This callback function will be invoked mid-handshake to allow the user to
inspect the key material, date and other certificate information sent from the server. For detailed
information on this callback function, see the API documentation for The Certificate Validation Callback
Function section.
The server may also choose to nominate a certificate callback function if client authentication is desired.
The MatrixSSL library must have been compiled with USE_CLIENT_AUTH defined in order to use this
parameter in the matrixSslNewServerSession function.
For clients wishing to quickly (and securely) reconnect to a server that it has recently connected to, there is
an optional sessonId parameter that may be used to initiate a faster resumed handshake (the cpu
intensive public key exchange is omitted). To use the session parameter, a client should allocate a
sslSessionId_t structure with matrixSslNewSessionId and pass it to matrixSslNewClientSession
during the initial connection with the server. Over the course of the session negotiation, the MatrixSSL
library will populate that structure behind-the-scenes so that during the next connection the same
sessionId parameter address can be used to initiate the resumed session.

3.4 Handshaking
During client session initialization with matrixSslNewClientSession the SSL handshake message
CLIENT_HELLO is encoded to the internal outgoing buffer. The client now needs to send this message to
the server over a communication channel.
The sequence of events that should always be used to transmit pending handshake data is as follows:

1. The user calls matrixSslGetOutdata to retrieve the encoded data and number of bytes to be sent
2. The user sends the number of bytes indicated from the out data buffer pointer to the peer
3. The user calls matrixSslSentData with the actual number of bytes that were sent
4. If more data remains (bytes sent < bytes to be sent), repeat the above 3 steps when the transport

layer is ready to send again
When the server receives notice that a client is starting a new session the matrixSslNewServerSession
API is invoked and the incoming data is retrieved and processed.
The sequence of events that should always be used when expecting handshake data from a peer is as
follows:

1. The application calls matrixSslGetReadbuf to retrieve a pointer to available buffer space in the
ssl_t structure.

2. The application reads (or copies) incoming data into that buffer
3. The application calls matrixSslReceivedData to process the data
4. The application examines the return code from matrixSslReceivedData to determine the next

step
All incoming messages should be copied into the provided buffer and passed to matrixSslReceivedData,
which processes the message and drives the handshake through the built-in SSLv3 or TLS state machine.
The parameters include the SSL context and the number of bytes that have been received. The return
code from matrixSslReceivedData tells the application what the message was and how it is to be
handled:

MATRIXSSL_REQUEST_SEND Success. The processing of the received data resulted in an SSL response message
that needs to be sent to the peer. If this return code is hit the user should call
matrixSslGetOutdata to retrieve the encoded outgoing data.

MATRIXSSL_REQUEST_RECV Success. More data must be received and this function must be called again. User
must first call matrixSslGetReadbuf again to receive the updated buffer pointer
and length to where the remaining data should be read into.

 13 © INSIDE Secure - 2015 – All rights reserved

3.5 Communicating Securely With Peers
3.5.1 Encrypting Data
Once the handshake is complete, the application wishing to encrypt data that will be sent to the peer has
the choice between two encoding options.
In-Situ Encryption
An in-situ encryption occurs when the outputted cipher text overwrites the plain text during the encoding
process. In this case, the user will retrieve an allocated buffer from the MatrixSSL library, populate the
buffer with the desired plaintext, and then notify the library that the plaintext is ready to be encoded. The
API steps for the in-situ method are as follows:

1. The application first determines the length of the plaintext that needs to be sent
2. The application calls matrixSslGetWritebuf with that length to retrieve a pointer to an internally

allocated buffer.
3. The application writes the plaintext into the buffer and then calls matrixSslEncodeWritebuf to

encrypt the plaintext
4. The application calls matrixSslGetOutdata to retrieve the encoded data and length to be sent

(SSL always adds some overhead to the message size)
5. The application sends the out data buffer contents to the peer.
6. The application calls matrixSslSentData with the number of bytes that were actually sent

User provided plaintext data location
The alternative to in-situ encryption is to allow the user to provide the location and length of the plaintext
data that needs to be encoded. In this case, the encrypted data is still written to the internal MatrixSSL
outdata buffer but the user provided plaintext data is left untouched. The API steps for this method are as
follows:

1. The user passes the plaintext and length to matrixSslEncodeToOutdata
2. The application calls matrixSslGetOutdata to retrieve the encoded data and length to be sent

(SSL always adds some overhead to the message size)
3. The application sends the out data buffer contents to the peer.
4. The application calls matrixSslSentData with the # of bytes that were actually sent

3.5.2 Decrypting Data
The sequence of events that should always be used when expecting application data from a peer is as
follows:

1. The application calls matrixSslGetReadbuf to retrieve an allocated buffer

MATRIXSSL_HANDSHAKE_COMPLETE Success. The SSL handshake is complete. This return code is returned to client side
implementation during a full handshake after parsing the FINISHED message from the
server. It is possible for a server to receive this value if a resumed handshake is being
performed where the client sends the final FINISHED message.

MATRIXSSL_RECEIVED_ALERT Success. The data that was processed was an SSL alert message. In this case, the
ptbuf pointer will be two bytes (ptLen will be 2) in which the first byte will be the alert
level and the second byte will be the alert description. After examining the alert, the
user must call matrixSslProcessedData to indicate the alert was processed and
the data may be internally discarded.

MATRIXSSL_APP_DATA Success. The data that was processed was application data that the user should
process. In this return code case the ptbuf and ptLen output parameters will be
valid. The user may process the data directly from ptbuf or copy it aside for later
processing. After handling the data the user must call matrixSslProcessedData
to indicate the plain text data may be internally discarded

PS_SUCCESS Success. This return code will be returned if the bytes parameter is 0 and there is no
remaining internal data to process. This could be useful as a polling mechanism to
confirm the internal buffer is empty. One real life use-case for this method of invocation
is when dealing with a Google Chrome browser that uses False Start.

< 0 Failure. See API documentation

 14 © INSIDE Secure - 2015 – All rights reserved

2. The application copies the incoming data into that buffer
3. The application calls matrixSslReceivedData to process the data
4. The application confirms the return code from matrixSslReceivedData is MATRIXSSL_APP_DATA

and parses ptLen bytes of the returned plain text
5. If the return code does not indicate application data, handle the return code as described in the

handshaking section above.
6. The application calls matrixSslProcessedData to inform the library it is finished with the plaintext

and checks to see if there are additional records in the buffer to process.

3.6 Ending a Session
When the application receives notice that the session is complete or has determined itself that the session
is complete, it should notify the other side, close the socket and delete the session. Calling
matrixSslEncodeClosureAlert and matrixSslDeleteSession will perform this step.
A call to matrixSslEncodeClosureAlert is an optional step that will encode an alert message to pass
along to the other side to inform them to close the session cleanly. The closure alert buffer is retrieved and
sent using the same matrixSslGetOutdata then matrixSslSentData mechanism that all outgoing data
uses. Since the connection is being closed, the application shouldn’t block indefinitely on sending the
closure alert.

3.7 Closing the Library
At application exit the MatrixSSL library should be un-initialized with a call to matrixSslClose. If the
application has called matrixSsNewKeys as part of the initialization process and kept its keys in memory it
should call matrixSslDeleteKeys before calling matrixSslClose. Also, any existing SSL sessions should
be freed by calling matrixSslDeleteSession before calling matrixSslClose.
Working implementations of MatrixSSL client and server applications integration can be found in the apps
subdirectory of the distribution package.

 15 © INSIDE Secure - 2015 – All rights reserved

4 CONFIGURABLE FEATURES
MatrixSSL contains a set of optional features that are configurable at compile time. This allows the user to
remove unneeded functionality to reduce code size footprint. Each of these options are pre-processor
defines that can be disabled by simply commenting out the #define in the header files or by using the -D
compile flag during build. APIs with dependencies on optional features are highlighted in the Define
Dependencies sub-section in the API documentation for that function.

4.1 Protocol and Performance

MATRIX_USE_FILE_SYSTEM Define in the build environment. Enables file access for parsing X.509
certificates and private keys.

USE_CLIENT_SIDE_SSL matrixsslConfig.h - Enables client side SSL support

USE_SERVER_SIDE_SSL matrixsslConfig.h - Enables server side SSL support

USE_TLS matrixsslConfig.h - Enables TLS 1.0 protocol support (SSL version 3.1)

USE_TLS_1_1 matrixsslConfig.h - Enables TLS 1.1 (SSL version 3.2) protocol support.
USE_TLS must be enabled

USE_TLS_1_2 matrixsslConfig.h - Enables TLS 1.2 (SSL version 3.3) protocol support.
USE_TLS_1_1 must be enabled

DISABLE_SSLV3 matrixsslConfig.h - Disables SSL version 3.0. Defined by default since
MatrixSSL 3.3.1.

DISABLE_TLS_1_0

matrixsslConfig.h – Disables TLS 1.0 if USE_TLS is enabled but only
later versions of the protocol are desired

DISABLE_TLS_1_1

matrixsslConfig.h – Disables TLS 1.1 if USE_TLS_1_1 is enabled but
only later versions of the protocol are desired

SSL_SESSION_TABLE_SIZE

matrixsslConfig.h – Applicable to servers only. The size of the session
resumption table for caching session identifiers. Old entries will be
overwritten when size is reached

SSL_SESSION_ENTRY_LIFE

matrixsslConfig.h – Applicable to servers only. The time in seconds that
a session identifier will be valid in the session table. A value of 0 will
disable SSL resumption

USE_STATELESS_SESSION_TICKETS matrixsslConfig.h – Enable stateless session tickets as defined in RFC
5077

ENABLE_SECURE_REHANDSHAKES matrixsslConfig.h - Enable secure rehandshaking as defined in RFC
5746

REQUIRE_SECURE_REHANDSHAKES matrixsslConfig.h - Halt communications with any SSL peer that has not
implemented RFC 5746

ENABLE_INSECURE_REHANDSHAKES matrixsslConfig.h - Enable legacy renegotiations. NOT
RECOMMENDED

REQUESTED_MAX_PLAINTEXT_RECORD_LEN matrixsslConfig.h – Enable the “max_fragment_length” TLS extension
defined in RFC 4366. Value of #define determines fragment length
(server may reject)

ENABLE_FALSE_START matrixsslConfig.h – See code comments in file

 16 © INSIDE Secure - 2015 – All rights reserved

4.2 Public Key Math Assembly Optimizations
Optimizing assembly code for low level math operations is available for many common processor
architectures. The files pstm_montgomery_reduce.c, pstm_mul_comba.c, and pstm_sqr_comba.c in the
crypto/math directory implement the available assembly optimizations. These following defines are set in
the osdep.h header file by detecting the platform. These should be set accordingly when porting to an
unsupported platform.

USE_BEAST_WORKAROUND matrixsslConfig.h – See code comments in file.

USE_CLIENT_AUTH matrixsslConfig.h - Enables two-way(mutual) authentication

SERVER_CAN_SEND_EMPTY_CERT_REQUEST matrixsslConfig.h – A client authentication feature. Allows the server to
send an empty CertificateRequest message if no CA files have been
loaded

SERVER_WILL_ACCEPT_EMPTY_CLIENT_CERT_MSG matrixsslConfig.h – A client authentication feature. Allows the server to
‘downgrade’ a client authentication handshake to a standard handshake
if client does not provide a certificate

USE_ZLIB_COMPRESSION matrixsslConfig.h – Enables handshake support for zlib compression.
See the section for zlib compression in this document for more
information.

USE_PRIVATE_KEY_PARSING cryptoConfig.h - Enables X.509 private key parsing

USE_PKCS5 cryptoConfig.h - Enables the parsing of password protected private keys

USE_PKCS8 cryptoConfig.h - Enables the parsing of PKCS#8 formatted private keys

USE_PKCS12 cryptoConfig.h - Enables the parsing of PKCS#12 formatted certificate
and key material

USE_1024_KEY_SPEED_OPTIMIZATIONS cryptoConfig.h - Enables fast math for 1024-bit public key operations

PS_PUBKEY_OPTIMIZE_FOR_SMALLER_RAM
PS_PUBKEY_OPTIMIZE_FOR_FASTER_SPEED

cryptoConfig.h - RSA and Diffie-Hellman speed vs. runtime memory
tradeoff. Default is to optimize for smaller RAM.

PS_AES_IMPROVE_PERF_INCREASE_CODESIZE
PS_3DES_IMPROVE_PERF_INCREASE_CODESIZE
PS_MD5_IMPROVE_PERF_INCREASE_CODESIZE
PS_SHA1_IMPROVE_PERF_INCREASE_CODESIZE

cryptoConfig.h - Optionally enable for selected algorithms to improve
performance at the cost of increased binary code size.

ENABLE_MD5_SIGNED_CERTS cryptoConfig.h – Support MD5 signature algorithm in X.509 certificates
and Certificate Revocation Lists.

MIN_RSA_SIZE
MIN_DH_SIZE
MIN_ECC_SIZE

cryptoConfig.h – The minimum size in bits that MatrixSSL will accept for
key exchange for each algorithm. Prevents weak keys from being used
or downgraded to.

PSTM_X86 32-bit x86 processor

PSTM_X86_64 64-bit x86 processor

PSTM_ARM ARMv4 processor

PSTM_MIPS 32 or 64 bit MIPS processor

PSTM_PPC 32 bit PowerPC processor

<none of the above> Standard C code implementation

 17 © INSIDE Secure - 2015 – All rights reserved

4.3 Debug Configuration
MatrixSSL contains a set of optional debug features that are configurable at compile time. Each of these
options are pre-processor defines that can be disabled by simply commenting out the #define in the
specified header files.

4.4 Minimum Firmware Configuration
MatrixSSL can be built to a minimum size using TLS 1.2, PSK cipher with AES128 and SHA256.
If interoperability with OpenSSL is desired, this standard cipher suite is not implemented (as of 1.0.1j). In
this case, USE_SHA must also be defined and the cipher suite changed to
USE_TLS_PSK_WITH_AES_256_CBC_SHA or USE_TLS_PSK_WITH_AES_128_CBC_SHA.
The MatrixSSL Performance Guide has more information on storage and memory requirements for various
configurations and platforms.
To enable minimal configuration, all options in core/coreConfig.h, crypto/cryptoConfig.h and
matrixssl/matrixsslConfig.h should be commented out, except for the following:

HALT_ON_PS_ERROR coreConfig.h - Enables the osdepBreak platform function whenever a
psError trace function is called. Helpful in debug environments.

USE_CORE_TRACE coreConfig.h - Enables the psTraceCore family of APIs that display
function-level messages in the core module

USE_CRYPTO_TRACE cryptoConfig.h - Enables the psTraceCrypto family of APIs that
display function-level messages in the crypto module

USE_SSL_HANDSHAKE_MSG_TRACE matrixsslConfig.h - Enables SSL handshake level debug trace for
troubleshooting connection problems

USE_SSL_INFORMATIONAL_TRACE matrixsslConfig.h - Enables SSL function level debug trace for
troubleshooting connection problems

coreConfig.h Optional: USE_MATRIX_MEMORY_MANAGEMENT

cryptoConfig.h USE_AES, USE_SHA256, USE_HMAC
Optional: __AES__ block to enable AESNI on Intel platforms.
Optional: For OpenSSL compatibility, also enable USE_SHA1

matrixsslConfig.h USE_TLS_PSK_WITH_AES_128_CBC_SHA256
USE_TLS, USE_TLS_1_1, USE_TLS_1_2, DISABLE_TLS_1_1,

DISABLE_TLS_1_0, DISABLE_SSLV3
USE_CLIENT_SIDE_SSL and/or USE_SERVER_SIDE_SSL
Optional: SSL_DEFAULT_IN_BUF_SIZE,

SSL_DEFAULT_OUT_BUF_SIZE set to 1500 for reduced RAM
footprint.

Optional for Server: SSL_SESSION_TABLE_SIZE as low as 1 for
reduced RAM footprint.

Optional: USE_DTLS
Optional: For OpenSSL compatibility, enable:

USE_TLS_PSK_WITH_AES_256_CBC_SHA or
USE_TLS_PSK_WITH_AES_128_CBC_SHA

Code + Data Size PSK_AES128_SHA256 PSK_AES128_SHA1

ARM Thumb 2 24108 B 25771 B

 18 © INSIDE Secure - 2015 – All rights reserved

5 SSL HANDSHAKING
The core of SSL security is the handshake protocol that allows two peers to authenticate and negotiate
symmetric encryption keys. A handshake is defined by the specific sequence of SSL messages that are
exchanged between the client and server. A collection of messages being sent from one peer to another
is called a flight.

5.1 Standard Handshake
The standard handshake is the most common and allows a client to authenticate a server. There are four
flights in the standard handshake.

Client Notes
The client is the first to send and the last to receive. Therefore, a MatrixSSL implementation of a client
must be testing for the MATRIXSSL_HANDSHAKE_COMPLETE return code from matrixSslReceivedData to
determine when application data is ready to be encrypted and sent to the server.
When a client wishes to begin a standard handshake, matrixSslNewClientSession will be called with an
empty sessionId.

Client Server

CLIENT_HELLO

SERVER_HELLO

CERTIFICATE

SERVER_HELLO_DONE

CLIENT_KEY_EXCHANGE

CHANGE_CIPHER_SPEC

FINISHED

CHANGE_CIPHER_SPEC

FINISHED

Secure, server authenticated communication begins.

APP_DATA

ALERT_CLOSURE

Secure, server authenticated communication ends.

 19 © INSIDE Secure - 2015 – All rights reserved

5.2 Client Authentication Handshake
The client authentication handshake allows a two-way authentication. There are four flights in the client
authentication handshake.

Client Notes
The client is the first to send and the last to receive. Therefore, a MatrixSSL implementation of a client
must be testing for the MATRIXSSL_HANDSHAKE_COMPLETE return code from matrixSslReceivedData to
determine when application data is ready to be encrypted and sent to the server.
In order to participate in a client authentication handshake, the client must have loaded a Certificate
Authority file during the call to matrixSslLoadRsaKeys.
Server Notes
To prepare for a client authentication handshake the server must nominate a certificate and private key
during the call to matrixSslLoadRsaKeys. The actual determination of whether or not to perform a client
authentication handshake is made when nominating a certificate callback parameter when invoking
matrixSslNewServerSession. If the callback is provided, a client authentication handshake will be
requested.

Client Server

CLIENT_HELLO

SERVER_HELLO

CERTIFICATE

CERTIFICATE_REQUEST

SERVER_HELLO_DONE

CERTIFICATE

CLIENT_KEY_EXCHANGE

CERTIFICATE_VERIFY

CHANGE_CIPHER_SPEC

FINISHED

CHANGE_CIPHER_SPEC

FINISHED

Secure, mutually authenticated communication begins.

APP_DATA

ALERT_CLOSURE

Secure, mutually authenticated communication ends.

 20 © INSIDE Secure - 2015 – All rights reserved

5.3 Session Resumption Handshake
Session resumption enables a previously connected client to quickly resume a session with a server.
Session resumption is much faster than other handshake types because public key authentication is not
performed (authentication is implicit since both sides will be using secret information from the previous
connection). This handshake types has three flights.

Client Notes
The client is the first and the last to send data. Therefore, a MatrixSSL implementation of a client must be
testing for the MATRIXSSL_HANDSHAKE_COMPLETE return code from matrixSslSentData to determine when
application data is ready to be encrypted and sent to the server.
The client initiates a session resumption handshake by reusing the same sessionId_t structure from a
previously connected session when calling matrixSslNewClientSession.
Server Notes
The MatrixSSL server will cache a SSL_SESSION_TABLE_SIZE number of session IDs for resumption. The
length of time a session ID will remain in the case is determined by SSL_SESSION_ENTRY_LIFE. Also, the
server sends the Finished message first in this case, which is different from the standard handshake.

5.4 Other Handshakes
Other cipher suites can require variations on the handshake flights. PSK cipher suites do not use any key
exchange. DSA cipher suites do not use certificates, and DH/DHE/ECDH/ECDHE cipher suites may or
may not use certificates for authentication.

5.5 Re-Handshakes
A re-handshake is a handshake over a currently connected SSL session. A re-handshake may take the
form of a standard handshake, a client authentication handshake, or a resumed handshake. Either the
client or server may initiate a re-handshake.
The matrixSslEncodeRehandshake API is used to initiate a re-handshake. The three most common
reasons for initiating re-handshakes are:

1. Re-key the symmetric cryptographic material
Re-keying the symmetric keys adds an extra level of security for applications that require the
connection be open for long periods of time or transferring large amounts of data. Periodic
changes to the keys can discourage hackers who are mounting timing attacks on a connection.

2. Perform a client authentication handshake
A scenario may arise in which the server requires that the data being exchanged is only allowed
for a client whose certificate has been authenticated, but the original negotiation took place without

Client Server

CLIENT_HELLO

SERVER_HELLO

CHANGE_CIPHER_SPEC

FINISHED

CHANGE_CIPHER_SPEC

FINISHED

Secure, authenticated communication begins.

APP_DATA

ALERT_CLOSURE

Secure, authenticated communication ends.

 21 © INSIDE Secure - 2015 – All rights reserved

client authentication. In order to do a client authenticated re-handshake the server must call
matrixSslEncodeRehandshake with a certificate callback parameter.

3. Change cipher spec
The cipher suite may be changed on a connected session using a re-handshake if needed. The
client must call matrixSslEncodeRehandshake with the new cipherSpec.

5.5.1 Disable Re-Handshaking At Runtime
Global disabling of re-handshakes can be controlled at compile time using the
ENABLE_SECURE_REHANDSHAKES define but sometimes a per-session control of the feature is required. In
these cases, the matrixSslDisableRehandshakes and matrixSslReEnableRehandshakes APIs are
used.

5.5.2 The Re-Handshake Credit Mechanism
The re-handshake feature has been used at the entry point in a couple TLS attacks. In an effort to combat
these attacks, MatrixSSL has incorporated a mechanism that prevents a peer from continually re-
handshaking. This “re-handshake credit” mechanism is simply a count of how often the MatrixSSL-
enabled application will allow a peer to request a re-handshake before sending the NO_RENEGOTIATION
alert. The default number of credits is set using the DEFAULT_RH_CREDITS define in matrixssllib.h. The
shipped default is 1.
In order to allow real-life conditions of re-handshakes, a single credit will be added after transmitting a
given number of application data bytes. The default count of bytes that have to be sent before gaining a
credit is set using the BYTES_BEFORE_RH_CREDIT define in matrixssllib.h. The shipped default is 20MB.

 22 © INSIDE Secure - 2015 – All rights reserved

6 OPTIONAL FEATURES
This section describes some of the optional SSL handshake features. Additional details can be found in
the API documentation for the specific functions that are referenced here.

6.1 Stateless Session Ticket Resumption
RFC 5077 defines an alternative method to the standard server-cached session ID mechanism. The
stateless ticket mechanism allows the server to send an encrypted session ticket to the client that the client
can use in a later connection to speed up the handshake process. The server does not have to store a
large number of session ID entries when this stateless mechanism is used.

Servers and Clients
The feature is made available with the USE_STATELESS_SESSION_TICKETS define in matrixsslConfig.h.

Clients
Clients that wish to use the stateless session resumption mechanism must set the ticketResumption
member of the sslSessOpts_t structure to 1 when calling matrixSslNewClientSession.
With that session option set, the client only has to use the standard session resumption API,
matrixSslNewSessionId, to complete the use of the feature. If a server does not support stateless
session tickets, the standard resumption mechanism will still work.

Servers
The server must load at least one session ticket key using matrixSslLoadSessionTicketKeys to enable
the feature. A user callback can optionally be registered that will be called each time a session ticket is
received from a client. The callback will indicate to the user whether or not the server already has the
correct ticket key cached. The callback can be used to locate a ticket key or to void the ticket and revert to
a full handshake. The matrixSslSetSessionTicketCallback API is used to register this function.
The MatrixSSL implementation for resumption does not renew the session ticket as described in section
3.1 of the RFC (Figure 2). If the ticket is valid, the server progresses with the standard resumed
handshake without a NewSessionTicket handshake message. If the server is unable to decrypt the
session ticket, a full handshake will take place and a new session ticket will be issued. The MatrixSSL
library also handles the expiration of a session ticket based on the value of the SSL_SESSION_ENTRY_LIFE
in matrixsslConfig.h.

6.2 Server Name Indication Extension
RFC 6066 defines a TLS hello extension to allow the client to send the name of the server it is trying to
securely connect to. This allows “virtual” servers to locate the correct server with the expected key
material to complete the connection.

Servers
Server applications should register the SNI callback using matrixSslRegisterSNICallback. This
function must be called immediately after matrixSslNewServerSession before the first incoming flight
from the client is processed. The callback will be invoked during the processing of the CLIENT_HELLO
message if the client has included the SNI extension. The callback will use the incoming hostname to
locate the correct key material and return them in the sslKeys_t structure format.

Clients
Clients must include the SNI extension in the CLIENT_HELLO message. The utility function
matrixSslCreateSNIext is provided to help format the extension given a hostname and hostname length.
Once the extension format has been created it will be loaded into the tlsExtension_t structure with the

 23 © INSIDE Secure - 2015 – All rights reserved

matrixSslLoadHelloExtension API (matrixSslNewHelloExtension must first be called). The
tlsExtension_t type is then passed to matrixSslNewClientSession to complete the client side SNI
integration.

6.3 Maximum Fragment Length
RFC 6066 defines a TLS extension for negotiating a smaller maximum message size. The default
maximum is 16KB (and can't be set larger). The only allowed sizes that may be negotiated are 512, 1024,
2048, or 4096 bytes. The client requests the feature in a CLIENT_HELLO extension and if the server
agrees to the new maximum fragment length it will acknowledge that in the SERVER_HELLO reply.

Clients
To request a smaller maximum fragment length the user sets the maxFragLen member of the
sslSessOpts_t *options parameter to 512, 1024, 2048, or 4096 when calling
matrixSslNewClientSession. The server is free to deny the request.

Servers
Servers will agree to the maximum fragment length request by default. To disable the feature for a
session, the user may set the maxFragLen member of the sslSessOpts_t *options parameter to -1
when calling matrixSslNewServerSession.

6.4 Truncated HMAC
RFC 6066 defines a TLS extension for negotiating an HMAC length of 10 bytes. The client requests the
feature in a CLIENT_HELLO extension and if the server agrees to the truncation it will acknowledge that in
the SERVER_HELLO reply.

Clients
To request a truncated HMAC session the user sets the truncHmac member of the sslSessOpts_t
*options parameter to PS_TRUE when calling matrixSslNewClientSession. The server is free to deny
the request.

Servers
Servers will agree to HMAC truncation by default. To disable the feature for a session, the user may set
the truncHmac member of the sslSessOpts_t *options parameter to -1 when calling
matrixSslNewServerSession.

6.5 Application Layer Protocol Negotiation Extension
RFC 7301 defines a TLS hello extension that enables servers and client to agree on the protocol that will
be used after the TLS handshake is complete. The idea is to embed the negotiation in the TLS handshake
to save any round trips that might be needed to negotiate the protocol after the handshake. The extension
works the same as any extension by the client sending a list of protocols it wishes to use in the
CLIENT_HELLO and the server replying with an extension in the SERVER_HELLO. The trade-off for
negotiating the protocol during the handshake is that both MatrixSSL servers and clients must be prepared
to intervene in the middle of the handshake process via registered callback functions.

Servers and Clients
The ALPN extension APIs will be available only if the USE_ALPN define in matrixsslConfig.h is enabled at
compile-time. The define MAX_PROTO_EXT is the maximum number of protocols that can be expected in
the list of protocols. The default is 8 and can be found in matrixssllib.h.

 24 © INSIDE Secure - 2015 – All rights reserved

Servers
Servers that wish to process ALPN extensions sent from a client must call the
matrixSslRegisterALPNCallback function immediately after the session is created with
matrixSslNewServerSession. The timing of the registration is important so that the callback can be
associated with the proper session context before the first handshake message from the client is passed to
matrixSslReceivedData.
The server ALPN callback that is registered with matrixSslRegisterALPNCallback must have a
prototype of:

 void ALPN_callback(void *ssl, short protoCount, char *proto[MAX_PROTO_EXT],
 int32 protoLen[MAX_PROTO_EXT], int32 *index)

The ssl parameter is the session context and may be typecast to an ssl_t* type if access is required.
The protoCount is the number of protocols that the client has sent in the CLIENT_HELLO extension. It is
the count of the number of array entries in the proto and protoLen parameters to follow.
The proto parameter is the priority-ordered list of string protocol names the client wants to communicate
with following the TLS handshake. The protoLen parameter holds the string lengths of the proto
counterpart parameter for each protocol.
The index parameter is an output that the callback logic will assign based on the desired action:

• The index of the proto array member the server has agreed to use. The index is the zero-based
index to the array so a return value of 0 will indicate the first protocol in the list. This selection will
result in the server including its own ALPN extension in the SERVER_HELLO message with the
chosen protocol.

• A negative value assigned to index indicates the server is not willing to communicate using any of
the protocols. A fatal “no_application_protocol” alert will be sent to the client and the handshake
will terminate.

• If the callback does not assign any value to the outgoing parameter, the server will not take any
action. That is, neither a reply ALPN extension nor an alert will be sent to the client and the
handshake will continue normally.

Clients
To support this feature, clients must be able to generate the ALPN extension and also receive the server
reply.
To generate the ALPN extension the API matrixSslCreateALPNext is used in conjunction with the
matrixSslNewHelloExtension/matrixSslLoadHelloExtension framework. The
matrixSslCreateALPNext API accepts an array of unsigned char* string values (array length of
MAX_PROTO_EXT) along with a companion array that hold the string lengths for the protocol list. The
function will format the protocols into the specified ALPN extension format and return that to the caller in
the output parameters. Once the extension has been created the client must load the extension using the
matrixSslLoadHelloExtension API (matrixSslNewHelloExtension must have been called as well).
Finally, the extension must be passed to matrixSslNewClientSession in the extensions parameter. Here
is what the ALPN extension creation and session start might look like:

 tlsExtension_t *extension;

 unsigned char *alpn[MAX_PROTO_EXT];

 int32 alpnLen[MAX_PROTO_EXT];

matrixSslNewHelloExtension(&extension);

 alpn[0] = psMalloc(NULL, strlen("http/1.0"));

 25 © INSIDE Secure - 2015 – All rights reserved

 memcpy(alpn[0], "http/1.0", strlen("http/1.0"));

 alpnLen[0] = strlen("http/1.0");

 alpn[1] = psMalloc(NULL, strlen("http/1.1"));

 memcpy(alpn[1], "http/1.1", strlen("http/1.1"));

 alpnLen[1] = strlen("http/1.1");

 matrixSslCreateALPNext(NULL, 2, alpn, alpnLen, &ext, &extLen);

 matrixSslLoadHelloExtension(extension, ext, extLen, EXT_ALPN);

 psFree(alpn[0]);

 psFree(alpn[1]);

matrixSslNewClientSession(&ssl, keys, sid, g_cipher, g_ciphers,

 certCb, g_ip, extension, extensionCb, &options);

matrixSslDeleteHelloExtension(extension);

To receive the server reply to the ALPN extension the client must register an extension callback routine
using the extCb parameter when calling matrixSslNewClientSession. The callback will be invoked with
the ALPN extension ID of EXT_ALPN (16) with a format of a single byte length followed by the protocol
string value the server has agreed to.
See the example in ./apps/client.c for full implementation details.

6.6 MatrixSSL Statistics Framework
Implementations that wish to capture counts of SSL events can tap into the MATRIXSSL_STATS
framework by enabling USE_MATRIXSSL_STATS during the compile. The mechanism is a very simple
counter that can be modified to record whatever specific SSL event the user wants. The default set of
events capture the following:

• CLIENT_HELLO count (sent for clients and received for servers)
• SERVER_HELLO count (sent for servers and received for clients)
• Alerts sent
• Resumed handshake count
• Failed resumed handshake count
• Number of application data bytes received
• Number of application data bytes sent

To add an event to the framework the user must:
1. Add a member to the matrixsslStats_t data type in matrixssllib.h
2. Add a unique #define ID to the list of existing stats in matrixssllib.h
3. Add a handler for the new ID in the matrixsslUpdateStat function in matrixssl.c
4. Add a handler for the new ID in the matrixsslGetStat function in matrixssl.c
5. Add the call to matrixsslUpdateStat in the appropriate place in the MatrixSSL library

6.7 ZLIB Compression
The TLS specification specifies a mechanism for peers to agree on an algorithm to compress data before
being encrypted. Although the feature is not widely adopted and is somewhat discouraged due to the
‘CRIME’ attack, there is limited support in MatrixSSL for zlib compression for implementations that are
sensitive to throughput.

 26 © INSIDE Secure - 2015 – All rights reserved

To enable the feature, enable USE_ZLIB_COMPRESSION in matrixsslConfig.h. It will also be necessary to
edit the development environment to link with a zlib library. For a standard GCC POSIX environment this
should simply mean including –lz in the linker flags.
The Matrix built-in support for this feature is limited. The feature only supports the internal compression
and decompression of the FINISHED handshake message for initial handshakes. This means re-
handshaking is not supported and that the application MUST compress and decompress application data
manually.
On the application data sending side:
After a successful handshake with USE_ZLIB_COMPRESSION enabled, the user should call
matrixSslIsSessionCompressionOn to test whether that mode has been successfully negotiated. If
PS_TRUE, the user must manually zlib deflate any application data before calling the Matrix encryption
functions. Do not compress more plaintext data in a single record than the maximum allowed record size to
remain compatible with 3rd party SSL implementations.
On the application data receiving side:
Applications must test for MATRIXSSL_APP_DATA_COMPRESSED as the return code from
matrixSslReceivedData. If found, the data must be zlib inflated to obtain the plaintext data

