

Electronic versions are uncontrolled unless directly accessed from the QA Document Control system.

Printed version are uncontrolled except when stamped with ‘VALID COPY’ in red.

External release of this document may require a NDA.

© INSIDE Secure - 2013 - All rights reserved

MatrixSSL Design
Documentation

 2 © INSIDE Secure - 2013 - All rights reserved

TABLE OF CONTENTS

1	
 INTRODUCTION .. 4	

1.1 How to use this document .. 4	

1.2 Background .. 4	

1.3 Design Goals .. 4	

2	
 ARCHITECTURE DESIGN ... 5	

2.1 Overview .. 5	

2.2 Code Files .. 5	

2.2.1 Matrixssl ... 5	

2.2.2 Crypto .. 6	

2.2.3 Core ... 6	

2.3 Data .. 7	

2.3.1 Matrixssl structures .. 7	

2.3.1.1 ssl_t .. 7	

2.3.1.2 sslKeys_t .. 7	

2.3.1.3 sslRec_t .. 7	

2.3.1.4 sslCipherSpec_t .. 7	

2.3.1.5 sslSec_t .. 8	

2.3.1.6 sslSessionId_t ... 8	

2.3.1.7 sslSessionEntry_t ... 8	

2.3.2 Application-level Buffers .. 8	

2.4 Error Handling .. 9	

2.4.1 Protocol Errors ... 9	

2.4.2 Library Errors ... 9	

2.4.3 User Errors ... 9	

3	
 OPERATION .. 10	

3.1 Overview .. 10	

3.2 Handshakes ... 10	

3.2.1 Receiving and Parsing Flights ... 10	

3.2.1.1 End-of-handshake .. 11	

3.2.2 Creating Response Flights ... 11	

3.2.2.1 Postponed Flight Encryption ... 11	

3.2.3 Transition to encryption states ... 11	

3.3 Application Data Exchange .. 12	

3.3.1 Encrypting Data ... 12	

3.3.2 Decrypting Data ... 12	

3.4 Corner Cases ... 12	

3.4.1 Application Data Queued and Re-handshake Message Received 12	

3.4.2 Server Sends HELLO_REQUEST with Application Data Appended 12	

3.5 Workhorse Functions ... 13	

3.5.1 sslEncodeResponse .. 13	

3.5.2 matrixSslDecode .. 13	

3.5.2.1 ChangeCipherSpec record ... 14	

3.5.2.2 Handshake Record ... 14	

3.5.2.3 Application Data Record ... 14	

 3 © INSIDE Secure - 2013 - All rights reserved

3.5.2.4 Alert Record .. 14	

3.5.3 parseSSLHandshake ... 14	

 4 © INSIDE Secure - 2013 - All rights reserved

1 INTRODUCTION
SSL (Secure Socket Layer) is an application layer protocol that enables two peers to authenticate each
other and exchange data in an encrypted envelope. The purpose of the protocol is to prevent
eavesdroppers or a man-in-the-middle from seeing the data being exchanged. The MatrixSSL product is a
toolkit that enables any application running on any platform to incorporate the SSL protocol into its
communications.

TLS (Transport Layer Security) is a more recent and descriptive name for the security protocol and is
synonymous with SSL for the purposes of this document.

SSL is a client/server protocol in which the client initiates the handshake, which allows the two entities to
authenticate one another and to agree upon cryptographic keys that will be used to encrypt and decrypt
application data. The handshake is essentially the SSL protocol itself and is a back-and-forth exchange of
handshake messages. Collections of handshake messages that are sent to the peer in one pass are
referred to as a flight.

At the successful completion of the handshake, the two peers enter the application data exchange
portion of the communication using the agreed upon keys from the handshake negotiation stage.

Every data fragment regardless of whether it is a handshake message or an application data message is
formatted as an SSL record. Each record contains basic header information about the data to follow.

1.1 How to use this document
This document provides source code details that fall outside the scope of the standard documentation set.
It is intended for those wishing to understand more about the software architecture and interactions of the
library. This document does not detail the SSL protocol itself. The MatrixSSL API, Developer’s Guide and
Porting Guide should be read before this document in order to better understand the division between the
public interfaces and internal workings described here.

1.2 Background
MatrixSSL 1.0 was written in 2003 to fulfil the need of transport security for applications running on
embedded platforms that did not have sufficient memory resources or operating system support to run the
ubiquitous OpenSSL software project.

MatrixSSL has been under active development since that initial release, adding protocol updates,
cryptographic algorithms, and keeping up on security updates and feature additions.

1.3 Design Goals
The primary design goal of MatrixSSL is to remain platform agnostic in terms of operating system,
hardware architecture, and data transport mechanism. MatrixSSL does have many platform specific
optimizations available to customers but those do not generally affect the design of the software and are
outside the scope of this document.

The secondary design goal of MatrixSSL is to be an SSL solution for embedded environments by
maintaining a small binary code size and small RAM footprint at runtime.

 5 © INSIDE Secure - 2013 - All rights reserved

2 ARCHITECTURE DESIGN

2.1 Overview
MatrixSSL is layered as three modules. Each module is a top-level directory in the package structure.

Core is the foundation module and implements the lowest level functionality and platform dependencies.

Crypto contains all the raw cryptographic algorithms that SSL relies upon. It also contains the format
parsers for X.509, ASN.1, and private keys.

Matrixssl is the implementation of the SSL protocol for servers and clients.

These are logical modules that exist within a single MatrixSSL binary object. The modules interact only
through internal C code function calls. There are no TCP or out-of-band communications between the
three modules.

2.2 Code Files
This section summarizes which features/functionality each source code file is responsible for.

2.2.1 Matrixssl

File Functionality

sslEncode.c Creates handshake response flights. Encrypts application data.

sslDecode.c Parses and processes incoming handshake flights.

tls.c TLS master secret generation. TLS HMAC generation. Activates the read
and write cipher states for a given SSL session. Location of client hello
extension APIs.

sslv3.c SSLv3 finished hash calculation. SSLv3 master secret generation. SSLv3
HMAC generation.

matrixssl	

crypto	

core	

 6 © INSIDE Secure - 2013 - All rights reserved

hsHash.c TLS finished hash calculation. Maintains the on-going handshake hash
(and snapshot hash for client authentication)

prf.c Digest-based pseudo random functions.

cipherSuite.c Associates cryptographic parameters with the supported cipher suites.
Cipher suite specific tests to validate that the loaded key material supports
the cipher suite being negotiated.

matrixssl.c Library open and close APIs. Top-level key material loading APIs. SSL
session open, configure, and close APIs. Server side session resumption
cache. SSL memory pool open and close APIs.

matrixsslApi.c Most of the public APIs.

2.2.2 Crypto
The crypto module is very straightforward in terms of the file naming conventions. The subdirectory name
is the class of cryptographic operation and the file name is the implementation of the algorithm or an
identification of the specification being implemented such as x509.c and asn1.c.

2.2.3 Core

Core is the foundation module and implements the lowest level functionality.

There is a set of platform-specific functionality that must be implemented in the core module and is
contained within the osdep.c file. The MatrixSSL Porting Guide is the technical reference guide for this
portion of the product.

File Functionality Consumers (module)

osdep.c Return the current platform time (real or ever-increasing ticks) servers (matrixssl)

clients (matrixssl)

osdep.c Return entropy bytes PRNG (crypto)

osdep.c File access if reading certificate/keys from PEM formats on disk servers (matrixssl)

clients (matrixssl)

osdep.c Implement where the psTrace set of APIs will output their messages many places

list.h A fast, circular, doubly-linked list implementation psMalloc (core)

list.h A basic single-linked list X.509 (crypto)

psmalloc.c The matrix deterministic memory feature, psMalloc many places

Table 1 -

 7 © INSIDE Secure - 2013 - All rights reserved

2.3 Data
2.3.1 Matrixssl structures

The primary MatrixSSL data structures are defined in matrixssllib.h

2.3.1.1 ssl_t
The primary data structure in MatrixSSL is the ssl_t session structure. This type is instantiated at
session creation and exists until session deletion. It is the context data parameter that is passed to the
majority of public APIs. Some of the more important members stored in the data type are the input/output
buffers and members that control the SSL state. There is no need for an application to inspect the
contents of the ssl_t type.

When using the Deterministic Memory feature of MatrixSSL, the sizeof(ssl_t) structure represents the
entirety of the SESSION_POOL and requires about 2-3KB of storage depending on which features are
enabled.

An ssl_t structure holds pointers for four important sub-structures: sslKeys_t, sslRec_t,
sslCipherSpec_t, and sslSec_t. These structures are discussed below.

2.3.1.2 sslKeys_t
This data type holds the certificate and optional private key information for the SSL entity that is nominated
by the application. This data exists longer than the session lifecycle and is allocated and freed by
matrixSslNewKeys and matrixSslDeleteKeys.

Key data is essential to the SSL handshake process. It enables the ability to perform public key
authentication and key exchange.

• Used during cipher suite negotiation to determine if the key material will support the requested
cipher suite (haveKeyMaterial function)

• During the CERTIFICATE and CERTIFICATE_VERIFY messages to authenticate peers

• During the SERVER_KEY_EXCHANGE and CLIENT_KEY_EXCHANGE messages to perform
key exchange

• During the CERTIFICATE_REQUEST message of client-authentication when the server tells the
client which Certificate Authorities it supports

When referenced from within an ssl_t context, the sslKeys_t member is not duplicated. So it is
important that matrixSslDeleteKeys is not called until all sessions that use the key material have been
shutdown.

2.3.1.3 sslRec_t

The sslRec_t data type contains information about the current (most recent) SSL record being parsed.
In addition to the length of the current record, the most important field in an SSL record header is the
content type. This field indicates whether the record is a handshake message, application data, or an
alert. The state machine makes sure all records that arrive are expected.

2.3.1.4 sslCipherSpec_t

The sslCipherSpec_t data type holds the encryption and MAC information for the SSL cipher suite that
has been negotiated. In addition to the key lengths, IV lengths and MAC lengths for message size pre-
calculations; the data type holds the function pointers that perform the raw encryption/decryption and MAC
generate/verify functionality from the crypto module.

The type member is also a very important member of this structure and is used to classify the required
key exchange method that determines which path the handshake will take (Diffie-Hellman or RSA, for

 8 © INSIDE Secure - 2013 - All rights reserved

example). The type member is transitioned to the overall ssl_t flags member in the internal
matrixSslSetKexFlags function in cipherSuite.c.

The full set of supported cipher suites are collected in an array of sslCipherSpec_t types in
cipherSuite.c. The array name is supportedCiphers.

2.3.1.5 sslSec_t

The sslSec_t data type holds the specific per-session cryptographic data such as the symmetric key
material and the public key information from the peer. These data members are managed to have the
shortest possible lifecycle necessary.

2.3.1.6 sslSessionId_t

The session ID data type is used on the client side for SSL resumption. It is allocated and freed on the
client side with the APIs matrixSslNewSessionId and matrixSslDeleteSessionId. It is passed as
a parameter to the matrixSslNewClientSession API. If empty, a full handshake will be performed
and will be internally populated with the resulting session ID. On subsequent
matrixSslNewClientSession API calls, the library will find the session ID and attempt a resumed
handshake.

2.3.1.7 sslSessionEntry_t
The sslSessionEntry_t data type is the server side of supporting session resumption. This data type
is stored in a simple list of size SSL_SESSION_TABLE_SIZE and is searched when a client sends a
session ID in the CLIENT_HELLO message.

2.3.2 Application-level Buffers
The data buffers are the byte streams that are sent and received between the two peers during an SSL
connection. They are used to hold incoming and outgoing handshake data during the handshake phase of
the connection and also the application data during the application data exchange phase. MatrixSSL
internally manages these data buffers and that can be most easily understood by looking at the primary
public APIs such as matrixSslGetOutdata, matrixSslGetReadbuf, and matrixSslGetWritebuf.

Internally, there are two buffers: the input buffer and the output buffer and are identified within the
ssl_t structure by the inbuf and outbuf members and are managed with the inlen, insize,
outlen, and outsize indexes.

During the application data exchange phase these two buffers are used as the naming suggests. The
empty input buffer is retrieved with a call to matrixSslGetReadbuf. After the buffer is populated with
incoming data it is decoded in-situ and the decrypted data is returned to the caller with
matrixSslRecievedData. Likewise, the empty output buffer is retrieved during
matrixSslGetWritebuf and the in-situ encrypted result is returned to the caller with
matrixSslGetOutdata.

During the handshake phase, the input and output buffers are not as clearly delineated. The same buffer
location is used for both receiving the incoming flight and writing the outgoing flight. So it is the inbuf that
is used for the outgoing flight creation. In this case, the library will swap the inbuf and outbuf pointers
after the flight creation so the standard public API calls will pull off the outgoing data when called upon.
You can see this swap in the matrixSslReceivedData function in the SSL_SEND_RESPONSE action
case.

The two data buffers are assigned default sizes that are set by the user with the
SSL_DEFAULT_IN_BUF_SIZE and SSL_DEFAULT_OUT_BUF_SIZE defines in matrixsslConfig.h. The
buffers will grow as needed up to the specification record maximum of 16KB (plus header overhead). If
the buffers do have to grow, they will be shrunk down to the default size after the data has been
processed. The resize is performed by the revertToDefaultBufsize and is called on the inbuf as
the last step in matrixSslReceivedData and as part of the processing of
matrixSslProcessedData. The outbuf is resized by matrixSslSetData.

 9 © INSIDE Secure - 2013 - All rights reserved

2.4 Error Handling
2.4.1 Protocol Errors

A primary responsibility of the library is to enforce the SSL/TLS specifications in terms of message formats
and expected results from cryptographic operations. The matrixSslDecode function is the enforcer of
the message formats and if an error is found the err member of the ssl_t session is used to set the SSL
alert and the processing immediately stops and a fatal alert message is created and queued for sending.

Upon creating the fatal alert the flags member of ssl_t is set to SSL_FLAGS_ERROR, which will prevent
the public APIs from creating or receiving any future records.

When receiving a fatal alert, the flags member of ss_t is set to SSL_FLAGS_ERROR which will prevent
the public APIs from sending or receiving any more data on the connection. The user should always be
closing a connection at the application upon receiving a fatal alert.

2.4.2 Library Errors

The vast majority of internal functions in MatrixSSL use an integer return code to signify the success or
failure of the function. A value of <0 generally indicates a failure and a value of 0 indicates success. In
some cases, a >0 return code will be used to return a useful data value and imply that the function was a
success.

There is no generic error management framework in the library. Each error must be bubbled up to the
calling public API where the user must inspect the status of the call to determine what to do next.

Being a standard C code library, there is no inherent garbage collector and so every function has to be
fully aware of the context it can be called from and memory freed where appropriate.

2.4.3 User Errors

Effort has been made to ensure that bad function parameter values passed to the public APIs are handled
gracefully.

Tests are not performed to ensure that gross misuse of the public API is error handled gracefully.

 10 © INSIDE Secure - 2013 - All rights reserved

3 OPERATION

3.1 Overview
MatrixSSL is toolkit that exposes a public API for applications to engage in SSL communications. The
library itself does not run any processes or dictate a run-time model for the application that is using the
interface. The only exception to this is that if it is known a MatrixSSL-enabled server will be used in a
multi-threaded environment that will serve simultaneous client connections, the USE_MULTITHREADING
define in coreConfig.h should be enabled to support mutex locking on the global session ID cache.

The matrixssl module can be separated into two major components: the handshake and the application
data exchange. The handshake is the SSL protocol itself in which messages are exchanged to perform
authentication and to agree on the shared encryption and decryption keys for use by the application data
exchange component. Collections of handshake messages that are sent to the peer are referred to as a
flight.

3.2 Handshakes
A primary duty of the handshake component is to track the state of the protocol so that the proper,
expected flight is being created or parsed for the given entity. The state machine at this level of
handshake control consists of the hsState and flags member of the ssl_t session structure.

3.2.1 Receiving and Parsing Flights

Data received from a peer is passed to the matrixSslReceivedData public API function. This function
is the buffer management wrapper around the actual parsing of the handshake flight. After some initial
sanity tests, the matrixSslDecode workhorse function is called (see details in Important Functions
below). The result of matrixSslDecode is the action that matrixSslRecievedData must perform on
the data buffers. During the handshake, the final expected action is SSL_SEND_RESPONSE. This is the
indication that matrixSslDecode was able to parse the expected flight and internally construct the
response flight (or alert) that is ready to be sent to the peer. Before reaching this desired
SSL_SEND_RESPONSE action it is possible some of the other actions will be encountered:

The matrixSslDecode function will only process a single record at a time. So, the action for
SSL_SUCCESS is to test if more data is available in inbuf and re-invoke matrixSslDecode if so. During
that test, inbuf will be ‘packed’ so that the start of the next available record will be moved to the front the
buffer to aid in ease of buffer management and to keep the available ‘free’ space as large as possible for
cases where more incoming data will need to be appended.

The action for SSL_FULL is an indication that the response flight is larger than the current buffer size. The
action is to grow the buffer with a reallocation call and invoke matrixSslDecode again. Note that the
SSL_FULL handler is growing the inbuf member rather than the outbuf member. Recall in the
discussion of Application-Level Buffers above that the inbuf is used for both incoming and outgoing
handshake flights and the swap with outbuf does not occur until the SSL_SEND_RESPONSE action is hit.

The action for SSL_PARTIAL is an indication that a full record is not available in inbuf for
matrixSslDecode to parse. The response is to ensure that the inbuf is large enough to hold the
incoming record and then return MATRIXSSL_REQUEST_RECV to the caller. The reason the action handler
will know if inbuf is large enough is because the SSL record header will contain the record size and
matrixSslDecode will pass back that hint in the reqLen output parameter.

If there is an error while parsing the incoming flight or if there is an error performing a cryptographic
operation related to the data sent in the incoming flight the MATRIXSSL_ERROR action will be hit. In this
case, the negative return value will be immediately passed to the caller of matrixSslReceivedData and
the user should shutdown the connection.

 11 © INSIDE Secure - 2013 - All rights reserved

3.2.1.1 End-of-handshake

The obvious exception to the expected SSL_SEND_RESPONSE action during a handshake is when the peer
is receiving the final message of the handshake and does not need to reply. In this case, the
MATRIXSSL_SUCCESS action is hit and a manual test of the SSL state is performed to see if this is truly
the completion of the handshake. In this case, the special return code of
MATRIXSSL_HANDSHAKE_COMPLETE is returned to the caller to let them know the application data
exchange phase is active.

The MATRIXSSL_SUCCESS case will only test for handshake completion if there is no more incoming data
queued in the inbuf. It is possible a peer might be sending the final FINISHED handshake message and
immediately sending application data in the same flight. In this scenario, matrixSslDecode will be
invoked immediately and the SSL_PROCESS_DATA action will be hit. There you will see the same end-of-
handshake scenario being tested for so that the proper BFLAG_HS_COMPLETE flag may be set. The caller
will never receive the MATRIXSSL_HANDSHAKE_COMPLETE return code in this scenario but it will be
implicit to them because they are receiving the MATRIXSSL_APP_DATA code.

3.2.2 Creating Response Flights

If you read the section on Receiving and Parsing Flights you will have gleaned that flight response creation
is ‘automatically’ done as part of the matrixSslReceivedData/matrixSslDecode responsibilities.
Details on the state machine and creation actions are detailed in the Important Functions section for
sslEncodeResponse below.

3.2.2.1 Postponed Flight Encryption

The response handshake flight is not encrypted (when applicable) until all the plaintext flight data has been
written to the buffer. This design choice was introduced to better support platforms on which non-blocking
hardware acceleration is used for public key operations. The state machine is not well suited for re-
entering the single flight buffer at specific locations to continue message creation after a public key
operation has finished. So the postponement mechanism allows the entire flight to be written in one pass
and the buffer locations for public key operations and message boundaries to be saved in simple lists.

The message boundaries are held in the flightEncode member of the ssl_t structure. The public key
operation data is held in the pkaAfter member. The encryption of the flight is done in encryptFlight.

Although more complex for the standard use-case this postponement method does have an offshoot
benefit that, if in the encrypted state of a re-handshake, an error occurs in writing a handshake message
the alert that is triggered will be encrypted using the current encryption state so the peer will have no
trouble decoding the alert.

3.2.3 Transition to encryption states

Another primary responsibility of the handshake state machine is to transition from plaintext data exchange
to encrypted data exchange. This happens during the handshake when the CHANGE_CIPHER_SPEC
message is sent/received. Therefore, the FINISHED message of the handshake will always be encrypted.

It is necessary to keep the encrypted read distinct from the encrypted write because the first side to send
the encrypted FINISHED will still have to process the plaintext CHANGE_CIHPER_SPEC message. The
functions that perform the transition are aptly named sslActivateWriteCipher and
sslActivateReadCipher.

sslActivateWriteCipher is called immediately after generating the CHANGE_CIPHER_SPEC
message in writeChangeCipherSpec. The function performs the transition by setting ssl_t encryption
members based on the sslCipherSpec_t and sslSec_t definition for the agreed upon suite and
symmetric keys. Specifically, the sslCipherSpec_t data is used to set the ssl_t members encrypt,
generateMac, nativeEnMacSize, enMacSize, enBlockSize, and enIvSize are set. The
sslSec_t data is used to set the writeMAC, writeKey, and writeIV members. The final important
setting is the flags parameter to enable SSL_FLAGS_WRITE_SECURE which is the primary test the state
machine will use to check for secure write status.

 12 © INSIDE Secure - 2013 - All rights reserved

sslActivateReadCipher is called immediately after parsing the CHANGE_CIPHER_SPEC message in
matrixSslDecode. The function performs the transition by setting ssl_t decryption members based on
the sslCipherSpec_t and sslSec_t definition for the agreed upon suite and symmetric keys.
Specifically, the sslCipherSpec_t data is used to set the ssl_t members decrypt, verifyMac,
nativeDeMacSize, deMacSize, deBlockSize, and deIvSize are set. The sslSec_t data is used
to set the readMAC, readKey, and readIV members. The final important setting is the flags parameter
to enable SSL_FLAGS_READ_SECURE which is the primary test the state machine will use to check for
secure read status.

In re-handshake scenarios, the entire second handshake will be encrypted but the
CHANGE_CIPHER_SPEC message will still transition to the newly agreed symmetric encryption state in
the same way described above.

3.3 Application Data Exchange
The MatrixSSL API document covers the user interface for this phase of SSL communications. This
section describes the internal design.

3.3.1 Encrypting Data
Application data encryption is handled by the internal function matrixSslEncode. The function is quite
easy to follow and consists of creating the record header using writeRecordHeader and the symmetric
encryption of the data itself using encryptRecord.

The only complicating aspect to matrixSslEncode is the check for whether the
USE_BEAST_WORKAROUND define is enabled to thwart a known CBC mode attack for TLS 1.0 and
lower. The solution to the exploit is to simply encrypt the first byte of each plaintext message into its own
record and encrypt the remainder in a second record.

3.3.2 Decrypting Data
The initial path for decrypting application data is identical to that of a handshake flight parse.
matrixSslRecievedData is called for any incoming data into the library and matrixSslDecode is
invoked to handle the decryption. Details on matrixSslDecode are below.

3.4 Corner Cases
Re-handshaking scenarios can be a particularly complex area due to the fact that handshake messages
may be arriving at any point during an existing connection.

3.4.1 Application Data Queued and Re-handshake Message Received
The scenario here is that a peer has encoded application data for sending but then calls
matrixSslReceivedData to discover the peer is requesting a re-handshake. This case is handled in
the SSL_SEND_RESPONSE case of matrixSslReceivedData by making sure to insert the outgoing
application data before the outgoing response flight in the buffer. Well-designed applications can avoid
this corner cases by handling all pending outgoing data prior to accepting incoming data.

3.4.2 Server Sends HELLO_REQUEST with Application Data Appended

The scenario here is that a server can send a HELLO_REQUEST handshake message to request a re-
handshake but also append an application data record right behind it in the same flight. This is a
complicated scenario for the state machine and public API because the HELLO_REQUEST parse will
trigger the process of a re-handshake and prepare the state machine for sending a CLIENT_HELLO
response handshake flight to the caller. Then the application data record will be immediately encountered
and the client will be in the wrong state to be accepting those. MatrixSSL handles this situation by ignoring
the HELLO_REQUEST and giving precedence to the application data. Ignoring a HELLO_REQUEST is

 13 © INSIDE Secure - 2013 - All rights reserved

allowed by the SSL specification. The handling of this corner case can be found in matrixSslDecode by
searching for the flagsBk member of the ssl_t structure. This member is one in a set of flags that are
used to rewind the state machine from the HELLO_REQUEST processing and put it back into an
application data exchange state.

3.5 Workhorse Functions
The majority of the processing in the MatrixSSL library happens within a relatively small number of
functions. This section highlights the important functions of the product.

3.5.1 sslEncodeResponse

The function sslEncodeResponse manages the creation of a response flight during handshaking. It is
invoked from matrixSslDecode when the state machine determines a response flight is required (or an
alert needs to be created).

The function is invoked without any explicit indication of the session state. The first test is to check if the
session has an alert status active. If so, writeAlert is invoked to create the alert message and the
function returns immediately with a MATRIXSSL_SUCCESS status, which will lead to an
SSL_SEND_RESPONSE action to the public API, matrixSslReceivedData. If an alert status is not
active, the hsState is used to determine where the entity is in the handshake protocol to begin the proper
flight creation. The hsState is always tracking the next expected incoming handshake message so the
case statements are implemented so that the flight being created will produce that expected response from
the peer.

The code logic becomes very manual at this point. Because there are several different handshake
variants the creation of the response flight might include tests for client or server, whether the handshake
is in a client authentication mode, and what key exchange mode the active cipher suite uses. There may
also be tests for the protocol version to account for their differences as defined in the specifications. All of
these individual tests and #ifdef functionality blocks make the function difficult to read in a casual code
examination.

An important design note for this function is the calculation of the overall flight size. Once the correct case
statement for the state is hit the next thing that happens is the estimated size calculation for the flight.
This is the manual process that involves many of the tests mentioned above and each test is done to
determine the individual handshake messages that comprise the flight. The message sizes are used to
increment the messageSize variable. At the end of the additions, if the buffer is not large enough to hold
the entire flight the function will return SSL_FULL to matrixSslDecode so it can grow the buffer and re-
invoke. If the connection is in an encrypted write state, the secureWriteAdditions function is used to
include the encryption overhead to each message. In this case, it is possible to get a false SSL_FULL
return because the padding for the messages is always estimated as the largest it could be. There is no
danger in this, however, as the buffer will simply have to grow and the calculation is performed again.

The individual handshake messages themselves are given a dedicated creation function. For example,
writeServerKeyExchange and writeCertificate are responsible for generating the specific
message for the connection. For these calls, the buffer has been converted to an sslBuf_t type to
easily track the position.

It would be very unusual for the creation of a response flight to fail. If it did, the likely reason would be a
memory allocation error. In this error case, the very final test in the function will find this condition and set
the alert status to INTERNAL_ERROR and encode that fatal alert.

On success, the function will simply return MATRIXSSL_SUCCESS and that is the indication to
matrixSslDecode that a flight has been queued and to return SSL_SEND_RESPONSE to
matrixSslReceivedData, which will then return MATRIXSSL_REQUEST_SEND to the application.

3.5.2 matrixSslDecode

 14 © INSIDE Secure - 2013 - All rights reserved

The function matrixSslDecode parses any data coming into the peer. It is called from the public API
matrixSslReceivedData. The data may be a handshake record, an alert, or an application data
record.

The function will decode a single SSL record at a time. If a handshake flight is being parsed and more
than one handshake message exists in the buffer, it is the role of matrixSslReceivedData to advance
the buffer and re-invoke matrixSslDecode after each message is parsed. When the final message in a
handshake flight is parsed and a response is required, matrixSslDecode will detect this case itself and
prepare the response with sslEncodeResponse.

As the function begins an initial check is made to see if the session is in an error state, in which case the
function is not eligible to be called. The next test is for whether SSL_FLAGS_NEED_ENCODE is set. This
is a goto mechanism to support the SSL_FULL case from sslEncodeResponse. The call stack will
have returned to matrixSslReceivedData to grow the buffer and matrixSslDecode will be invoked
again. This time the incoming handshake flight decodes will be bypassed.

Next, the SSL record header will be parsed to find the length and type of data being processed. If the
length is greater than the number of available bytes in the buffer, the SSL_PARTIAL code will be returned
and the user will be sent the MATRIXSSL_REQUEST_RECV code to read more data from the peer. A full
record is always required to be available before parsing can begin.

The one exception to the full record rule is the special MatrixSSL USE_CERT_CHAIN_PARSING feature
that allows the CERTIFICATE message to be divided on single certificate boundaries. This feature is only
meaningful, then, to implementations that are expecting certificate chains.

Now, the record is decrypted and the MAC is checked if the session is in the “secure read” state. If any
errors occur while decrypting or verifying the MAC, an alert creation will be triggered.

Next, the record type is tested and passed to the correct handler case.

3.5.2.1 ChangeCipherSpec record
The single byte message size is confirmed and the current handshake state is tested to ensure this
message is expected. If so, sslActivateReadCipher will be called to activate the symmetric keys to
decrypt further incoming data, the input buffer will be updated, and MATRIXSSL_SUCCESS will be returned.

3.5.2.2 Handshake Record

A handshake record is passed to parseSSLHandshake for processing and that function is detailed in the
section below. The return code from parseSSLHandake informs matrixSslDecode on the status of
that parse. MATRIXSSL_SUCCESS means the handshake message was a mid-flight message and another
handshake message is still expected. SSL_PROCESS_DATA is the indication that the handshake message
was the final expected message in the flight and a response is required. The response is driven by a call
to sslEncodeResponse as discussed above.

3.5.2.3 Application Data Record

An application data record is essentially just ready to be passed directly to the application. The record will
have already been decrypted. The state machine does first test to see if the handshake is complete and
the connection is in a valid state to be receiving application data.

3.5.2.4 Alert Record
An alert record is ready to be passed directly to the application. The record will have already been
decrypted.

3.5.3 parseSSLHandshake

 15 © INSIDE Secure - 2013 - All rights reserved

The parseSSLHandshake function performs the specific handshake message parsing and calls the
cryptographic operations necessary to perform the SSL key exchange and authentication.

The first task of the function is to read the handshake header to find which message is being parsed. The
state machine tests to see if the message is allowed for the current state. This is time during which the
variation in handshake types is determined. For example, a client will first be made aware that the server
is attempting a client authentication handshake if the CERTIFICATE_REQUEST message is encountered
after the CERTIFICATE message. The state flags will be set appropriately as each variation is
encountered.

The hsState is always tracking the next expected handshake message to be received so the switch
statement for that value will match exactly with the message being parsed. Each handshake message is
parsed as intelligently as possible, confirming embedded lengths are never larger than available data. If a
cryptographic operation is required during the parsing, it is handled in-line immediately in a blocking
manner (hardware integration relaxes this blocking restriction but that is beyond the scope of this
document).

After each message parse, the hsState is updated as required and either MATRIXSSL_SUCCESS or
SSL_PROCESS_DATA is returned as described in the Handshake Record section of the
matrixSslDecode discussion above.

