
Network Working Group J. Schoenwaelder
Request for Comments: 5345 Jacobs University Bremen
Category: Informational October 2008

 Simple Network Management Protocol (SNMP)
 Traffic Measurements and Trace Exchange Formats

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

IESG Note

 The IESG thinks that this work is related to IETF work done in the
 Operations and Management Area related to SNMP, but this does not
 prevent publishing. This RFC is not a candidate for any level of
 Internet Standard. The IETF disclaims any knowledge of the fitness
 of this RFC for any purpose and notes that the decision to publish is
 not based on IETF review apart from the IETF Last Call on the
 allocation of a URI by IANA and the IESG review for conflict with
 IETF work. The RFC Editor has chosen to publish this document at its
 discretion. See RFC 3932 for more information.

Abstract

 The Simple Network Management Protocol (SNMP) is widely deployed to
 monitor, control, and (sometimes also) configure network elements.
 Even though the SNMP technology is well documented, it remains
 relatively unclear how SNMP is used in practice and what typical SNMP
 usage patterns are.

 This document describes an approach to carrying out large-scale SNMP
 traffic measurements in order to develop a better understanding of
 how SNMP is used in real-world production networks. It describes the
 motivation, the measurement approach, and the tools and data formats
 needed to carry out such a study.

 This document was produced within the IRTF’s Network Management
 Research Group (NMRG), and it represents the consensus of all of the
 active contributors to this group.

Schoenwaelder Informational [Page 1]

RFC 5345 SNMP Traffic Measurements October 2008

Table of Contents

 1. Introduction ..3
 2. Measurement Approach ..4
 2.1. Capturing Traffic Traces5
 2.2. Converting Traffic Traces6
 2.3. Filtering Traffic Traces7
 2.4. Storing Traffic Traces7
 2.5. Analyzing Traffic Traces8
 3. Analysis of Traffic Traces9
 3.1. Basic Statistics ...9
 3.2. Periodic versus Aperiodic Traffic9
 3.3. Message Size and Latency Distributions9
 3.4. Concurrency Levels ..10
 3.5. Table Retrieval Approaches10
 3.6. Trap-Directed Polling - Myths or Reality?10
 3.7. Popular MIB Definitions11
 3.8. Usage of Obsolete Objects11
 3.9. Encoding Length Distributions11
 3.10. Counters and Discontinuities11
 3.11. Spin Locks ...12
 3.12. Row Creation ...12
 4. Trace Exchange Formats ...12
 4.1. XML Representation ..12
 4.2. CSV Representation ..17
 5. Security Considerations ..18
 6. IANA Considerations ..19
 7. Acknowledgements ...19
 8. References ...20
 8.1. Normative References20
 8.2. Informative References20

Schoenwaelder Informational [Page 2]

RFC 5345 SNMP Traffic Measurements October 2008

1. Introduction

 The Simple Network Management Protocol (SNMP) was introduced in the
 late 1980s [RFC1052] and has since then evolved to what is known
 today as the SNMP version 3 Framework (SNMPv3) [RFC3410]. While SNMP
 is widely deployed, it is not clear what protocol versions are being
 used, which protocol features are being used, how SNMP usage differs
 in different types of networks or organizations, which information is
 frequently queried, and what typical SNMP interaction patterns occur
 in real-world production networks.

 There have been several publications in the recent past dealing with
 the performance of SNMP in general [SM99][Mal02][Pat01], the impact
 of SNMPv3 security [DSR01][CT04], or the relative performance of SNMP
 compared to Web Services [PDMQ04][PFGL04]. While these papers are
 generally useful to better understand the impact of various design
 decisions and technologies, some of these papers lack a strong
 foundation because authors typically assume certain SNMP interaction
 patterns without having experimental evidence that the assumptions
 are correct. In fact, there are many speculations on how SNMP is
 being used in real-world production networks, and performance
 comparisons are based on limited test cases, but no systematic
 measurements have been performed and published so far.

 Many authors use the ifTable of the IF-MIB [RFC2863] or the
 tcpConnTable of the TCP-MIB [RFC4022] as a starting point for their
 analysis and comparison. Despite the fact that there is no evidence
 that operations on these tables dominate SNMP traffic, it is even
 more unclear how these tables are read and which optimizations are
 done (or not done) by real-world applications. It is also unclear
 what the actual traffic trade-off between periodic polling and more
 aperiodic bulk data retrieval is. Furthermore, we do not generally
 understand how much traffic is devoted to standardized MIB objects
 and how much traffic deals with proprietary MIB objects and whether
 the operation mix between these object classes differs between
 different operational environments (e.g., backbone networks, access
 networks, enterprise networks).

 This document recommends an approach to collecting, codifying, and
 handling SNMP traffic traces in order to find answers to some of
 these questions. It describes the tools that have been developed to
 allow network operators to collect traffic traces and to share them
 with research groups interested in analyzing and modeling network
 management interactions.

 While the SNMP trace collection and analysis effort was initiated by
 the research community, network operators can benefit from the SNMP
 measurements too. Several new tools are being developed as part of

Schoenwaelder Informational [Page 3]

RFC 5345 SNMP Traffic Measurements October 2008

 this effort that can be used to capture and analyze the traffic
 generated by management stations. This resulting information can
 then be used to improve the efficiency and scalability of management
 systems.

 The measurement approach described in this document is by design
 limited to the study of SNMP traffic. Studies of other management
 protocols or the impact of management protocols such as SNMP on other
 traffic sharing the same network resources is left to future efforts.

 This is an Informational document, produced within the IRTF’s Network
 Management Research Group (NMRG), and it represents the consensus of
 all of the active contributors to this group.

2. Measurement Approach

 This section outlines the process of doing SNMP traffic measurements
 and analysis. The process consists of the following five basic
 steps:

 1. Capture raw SNMP traffic traces in pcap packet capture files [1].

 2. Convert the raw traffic traces into a structured machine and
 human-readable format. A suitable XML schema has been developed
 for this purpose that captures all SNMP message details. Another
 more compact comma-separated values (CSV) format has been
 developed that only keeps key information about SNMP messages.

 3. Filter the converted traffic traces to hide or anonymize
 sensitive information. While the filtering is conceptually a
 separate step, filtering may actually be implemented as part of
 the previous data conversion step for efficiency reasons.

 4. Submit the filtered traffic traces to a repository from which
 they can be retrieved and analyzed. Such a repository may be
 public, under the control of a research group, or under the
 control of a network operator who commits to run analysis scripts
 on the repository on behalf of researchers.

 5. Analyze the traces by creating and executing analysis scripts
 that extract and aggregate information.

 Several of the steps listed above require the involvement of network
 operators supporting the SNMP measurement projects. In many cases,
 the filtered XML and CSV representation of the SNMP traces will be
 the interface between the researchers writing analysis scripts and
 the operators involved in the measurement activity. It is therefore
 important to have a well-defined specification of these interfaces.

Schoenwaelder Informational [Page 4]

RFC 5345 SNMP Traffic Measurements October 2008

 This section provides some advice and concrete hints on how the steps
 listed above can be carried out efficiently. Some special tools have
 been developed to assist network operators and researchers so that
 the time spent on supporting SNMP traffic measurement projects is
 limited. The following sections describe the five steps and some
 tools in more detail.

2.1. Capturing Traffic Traces

 Capturing SNMP traffic traces can be done using packet sniffers such
 as tcpdump [2], wireshark [3], or similar applications. Some care
 must be taken to specify pcap filter expressions that match the SNMP
 transport endpoints used to carry SNMP traffic (typically ’udp and
 (port 161 or port 162)’). Furthermore, it is necessary to ensure
 that full packets are captured, that is packets are not truncated
 (tcpdump option -s 0). Finally, it is necessary to carefully select
 the placement of the capturing probe within the network. Especially
 on bridged LANs, it is important to ensure that all management
 traffic is captured and that the probe has access to all virtual LANs
 carrying management traffic. This usually requires placing the
 probe(s) close to the management system(s) and configuring dedicated
 monitoring ports on bridged networks. Some bridges have restrictions
 concerning their monitoring capabilities, and this should be
 investigated and documented where necessary.

 It is recommended to capture at least a full week of data to capture
 diurnal patterns and one cycle of weekly behavior. Operators are
 strongly encouraged to capture traces over even longer periods of
 time. Tools such as tcpdump and tcpslice [2] or mergecap and
 editcap [3] can be used to split or merge pcap trace files as needed.

 Several operating systems can offload some of the TCP/IP processing
 such as the calculation of transport layer checksum to network
 interface cards. Traces that include traffic to/from a capturing
 interface that supports TCP/IP offloading can include incorrect
 transport layer checksums. The simplest solution is of course to
 turn checksum offloading off while capturing traces (if that is
 feasible without losing too many packets). The other solution is to
 correct or ignore checksums during the subsequent conversion of the
 raw pcap files.

 It is important to note that the raw pcap files should ideally be
 kept in permanent storage (e.g., compressed and encrypted on a CD ROM
 or DVD). To verify measurements, it might be necessary to go back to
 the original pcap files if, for example, bugs in the tools described
 below have been detected and fixed.

Schoenwaelder Informational [Page 5]

RFC 5345 SNMP Traffic Measurements October 2008

 For each captured trace, some meta data should be recorded and made
 available. The meta data should include information such as where
 the trace was collected (name of the network and name of the
 organization owning the network, description of the measurement point
 in the network topology where the trace was collected), when it was
 collected, contact information, the size of the trace, any known
 special events, equipment failures, or major infrastructure changes
 during the data collection period and so on. It is also extremely
 useful to provide a unique identification. There are special online
 services such as DatCat [4] where meta data can be stored and which
 provide unique identifiers.

2.2. Converting Traffic Traces

 Raw traces in pcap format must be converted into a format that is
 human readable while also remaining machine readable for efficient
 post-processing. Human readability makes it easy for an operator to
 verify that no sensitive data is left in a trace while machine
 readability is needed to efficiently extract relevant information.

 The natural choice here is to use an XML format since XML is human as
 well as machine readable and there are many tools and high-level
 scripting language application programming interfaces (APIs) that can
 be used to process XML documents and to extract meaningful
 information. However, XML is also pretty verbose, which increases
 processing overhead. In particular, the usage of XML streaming APIs
 is strongly suggested since APIs that require an in-memory
 representation of XML documents do not handle large traces well.

 Section 4.1 of this document defines a RELAX NG schema [OASISRNG] for
 representing SNMP traffic traces in XML. The schema captures all
 relevant details of an SNMP message in the XML format. Note that the
 XML format retains some information about the original ASN.1/BER
 encoding to support message size analysis.

 A lightweight alternative to the full-blown XML representation based
 on comma-separated values (CSV) is defined in Section 4.2. The CSV
 format only captures selected parts of SNMP messages and is thus more
 compact and faster to process.

 As explained in the previous sections, analysis programs that process
 raw pcap files should have an option to ignore incorrect checksums
 caused by TCP/IP offloading. In addition, analysis programs that
 process raw pcap files should be able to perform IP reassembly for
 SNMP messages that were fragmented at the IP layer.

Schoenwaelder Informational [Page 6]

RFC 5345 SNMP Traffic Measurements October 2008

 The snmpdump [5] package has been developed to convert raw pcap files
 into XML and CSV format. The snmpdump program reads pcap, XML, or
 CSV files as input and produces XML files or CSV files as output.

 Specific elements can be filtered as required to protect sensitive
 data.

2.3. Filtering Traffic Traces

 Filtering sensitive data (e.g., access control lists or community
 strings) can be achieved by manipulating the XML representation of an
 SNMP trace. Standard XSLT processors (e.g., xsltproc [6]) can be
 used for this purpose. People familiar with the scripting language
 Perl might be interested in choosing a suitable Perl module to
 manipulate XML documents [7].

 The snmpdump program, for example, can filter out sensitive
 information, e.g., by deleting or clearing all XML elements whose
 name matches a regular expression. Data type specific anonymization
 transformations that maintain lexicographic ordering for values that
 appear in instance identifiers [HS06] can be applied. Note that
 anonymization transformations are often bound to an initialization
 key and depend on the data being anonymized in an anonymization run.
 As a consequence, users must be careful when they merge data from
 independently anonymized traces. More information about network
 traffic trace anonymization techniques can be found in [XFA02],
 [FXAM04], [PAPL06], and [RW07].

2.4. Storing Traffic Traces

 The raw pcap traces as well as the XML / CSV formatted traces should
 be stored in a stable archive or repository. Such an archive or
 repository might be maintained by research groups (e.g., the NMRG),
 network operators, or both. It is of key importance that captured
 traces are not lost or modified as they may form the basis of future
 research projects and may also be needed to verify published research
 results. Access to the archive might be restricted to those who have
 signed some sort of a non-disclosure agreement.

 While this document recommends that raw traces should be kept, it
 must be noted that there are situations where this may not be
 feasible. The recommendation to keep raw traces may be ignored, for
 example, to comply with data-protection laws or to protect a network
 operator from being forced to provide the data to other
 organizations.

Schoenwaelder Informational [Page 7]

RFC 5345 SNMP Traffic Measurements October 2008

 Lossless compression algorithms embodied in programs such as gzip or
 bzip2 can be used to compress even large trace files down to a size
 where they can be burned on DVDs for cheap long-term storage.

 It must be stressed again that it is important to keep the original
 pcap traces in addition to the XML/CSV formatted traces since the
 pcap traces are the most authentic source of information.
 Improvements in the tool chain may require going back to the original
 pcap traces and rebuilding all intermediate formats from them.

2.5. Analyzing Traffic Traces

 Scripts that analyze traffic traces must be verified for correctness.
 Ideally, all scripts used to analyze traffic traces will be
 publically accessible so that third parties can verify them.
 Furthermore, sharing scripts will enable other parties to repeat an
 analysis on other traffic traces and to extend such analysis scripts.
 It might be useful to establish a common, versioning repository for
 analysis scripts.

 Due to the availability of XML parsers and the simplicity of the CSV
 format, trace files can be processed with tools written in almost any
 programming language. However, in order to facilitate a common
 vocabulary and to allow operators to easily read scripts they execute
 on trace files, it is suggested that analysis scripts be written in
 scripting languages such as Perl using suitable Perl modules to
 manipulate XML documents <http://perl-xml.sourceforge.net/faq/>.
 Using a scripting language such as Perl instead of system programming
 languages such as C or C++ has the advantage of reducing development
 time and making scripts more accessible to operators who may want to
 verify scripts before running them on trace files that may contain
 sensitive data.

 The snmpdump tool provides an API to process SNMP messages in C/C++.
 While the coding of trace analysis programs in C/C++ should in
 general be avoided for code readability, verifiability, and
 portability reasons, using C/C++ might be the only option in dealing
 with very large traces efficiently.

 Any results produced by analyzing a trace must be interpreted in the
 context of the trace. The nature of the network, the attachment
 point used to collect the trace, the nature of the applications
 generating SNMP traffic, or the events that happened while the trace
 was collected clearly influence the result. It is therefore
 important to be careful when drawing general conclusions based on a
 potentially (too) limited data set.

Schoenwaelder Informational [Page 8]

RFC 5345 SNMP Traffic Measurements October 2008

3. Analysis of Traffic Traces

 This section discusses several questions that can be answered by
 analyzing SNMP traffic traces. The questions raised in the following
 subsections are meant to be illustrative and no attempt has been made
 to provide a complete list.

3.1. Basic Statistics

 Basic statistics cover things such as:

 o protocol version used,

 o protocol operations used,

 o message size distribution,

 o error message type frequency, or

 o usage of authentication and encryption mechanisms.

 The Object Identifier (OID) names of the objects manipulated can be
 categorized into OID subtrees, for example, to identify
 ’standardized’, ’proprietary’, and ’experimental’ objects.

3.2. Periodic versus Aperiodic Traffic

 SNMP is used to periodically poll devices as well as to retrieve
 information at the request of an operator or application. The
 periodic polling leads to periodic traffic patterns while on-demand
 information retrieval causes more aperiodic traffic patterns. It is
 worthwhile to understand what the relationship is between the amount
 of periodic and aperiodic traffic. It will be interesting to
 understand whether there are multiple levels of periodicity at
 different time scales.

 Periodic polling behavior may be dependent on the application and
 polling engine it uses. For example, some management platforms allow
 applications to specify how long polled values may be kept in a cache
 before they are polled again. Such optimizations need to be
 considered when analyzing traces for periodic and aperiodic traffic.

3.3. Message Size and Latency Distributions

 SNMP messages are size constrained by the transport mappings used and
 the buffers provided by the SNMP engines. For the further evolution
 of the SNMP framework, it would be useful to know what the actual
 message size distributions are. It would be useful to understand the

Schoenwaelder Informational [Page 9]

RFC 5345 SNMP Traffic Measurements October 2008

 latency distributions, especially the distribution of the processing
 times by SNMP command responders. Some SNMP implementations
 approximate networking delays by measuring request-response times,
 and it would be useful to understand to what extent this is a viable
 approach.

 Some SNMP implementations update their counters from the underlying
 instrumentation following adaptive algorithms, not necessarily
 periodically, and not necessarily on-demand. The granularity of
 internal counter updates may impact latency measurements and should
 be taken into account.

3.4. Concurrency Levels

 SNMP allows management stations to retrieve information from multiple
 agents concurrently. It will be interesting to identify what the
 typical concurrency level is that can be observed on production
 networks or whether management applications prefer more sequential
 ways of retrieving data.

 Furthermore, it will be interesting to analyze how many redundant
 requests coming from applications are processed almost simultaneously
 by a device. The concurrency level and the amount of redundant
 requests has implications on caching strategies employed by SNMP
 agents.

3.5. Table Retrieval Approaches

 Tables can be read in several different ways. The simplest and most
 inefficient approach is to retrieve tables object-by-object in
 column-by-column order. More advanced approaches try to read tables
 row-by-row or even multiple-rows-by-multiple-rows. The retrieval of
 index elements can be suppressed in most cases or only a subset of
 columns of a table are retrieved. It will be useful to know which of
 these approaches are used on production networks since this has a
 direct implication on agent implementation techniques and caching
 strategies.

3.6. Trap-Directed Polling - Myths or Reality?

 SNMP is built around a concept called trap-directed polling.
 Management applications are responsible to periodically poll SNMP
 agents to determine their status. In addition, SNMP agents can send
 traps to notify SNMP managers about events so that SNMP managers can
 adapt their polling strategy and basically react faster than normal
 polling would allow.

Schoenwaelder Informational [Page 10]

RFC 5345 SNMP Traffic Measurements October 2008

 Analysis of SNMP traffic traces can identify whether trap-directed
 polling is actually deployed. In particular, the question that
 should be addressed is whether SNMP notifications lead to changes in
 the short-term polling behavior of management stations. In
 particular, it should be investigated to what extent SNMP managers
 use automated procedures to track down the meaning of the event
 conveyed by an SNMP notification.

3.7. Popular MIB Definitions

 An analysis of object identifier prefixes can identify the most
 popular MIB modules and the most important object types or
 notification types defined by these modules. Such information would
 be very valuable for the further maintenance and development of these
 and related MIB modules.

3.8. Usage of Obsolete Objects

 Several objects from the early days have been obsoleted because they
 cannot properly represent today’s networks. A typical example is the
 ipRouteTable that was obsoleted because it was not able to represent
 classless routing, introduced and deployed on the Internet in 1993.
 Some of these obsolete objects are still mentioned in popular
 publications as well as research papers. It will be interesting to
 find out whether they are also still used by management applications
 or whether management applications have been updated to use the
 replacement objects.

 Depending on the data recorded in a trace, it might be possible to
 determine the age of devices by looking at the values of objects such
 as sysObjectID and sysDecr [RFC3418]. The age of a device can then
 be taken into consideration when analyzing the use of obsolete and
 deprecated objects.

3.9. Encoding Length Distributions

 It will be useful to understand the encoding length distributions for
 various data types. Assumptions about encoding length distributions
 are sometimes used to estimate SNMP message sizes in order to meet
 transport and buffer size constraints.

3.10. Counters and Discontinuities

 Counters can experience discontinuities [RFC2578]. A widely used
 discontinuity indicator is the sysUpTime scalar of the SNMPv2-MIB
 [RFC3418], which can be reset through a warm start to indicate
 counter discontinuities. Some MIB modules introduce more specific
 discontinuity indicators, e.g., the ifCounterDiscontinuityTime of the

Schoenwaelder Informational [Page 11]

RFC 5345 SNMP Traffic Measurements October 2008

 IF-MIB [RFC2863]. It will be interesting to study to what extent
 these objects are actually used by management applications to handle
 discontinuity events.

3.11. Spin Locks

 Cooperating command generators can use advisory locks to coordinate
 their usage of SNMP write operations. The snmpSetSerialNo scalar of
 the SNMPv2-MIB [RFC3418] is the default coarse-grain coordination
 object. It will be interesting to find out whether there are command
 generators that coordinate themselves using these spin locks.

3.12. Row Creation

 Row creation is an operation not natively supported by the protocol
 operations. Instead, conceptual tables supporting row creation
 typically provide a control column that uses the RowStatus textual
 convention defined in the SNMPv2-TC [RFC2579] module. The RowStatus
 itself supports different row creation modes, namely createAndWait
 (dribble-mode) and createAndGo (one-shot mode). Different approaches
 can be used to derive the instance identifier if it does not have
 special semantics associated with it. It will be useful to study
 which of the various row creation approaches are actually used by
 management applications on production networks.

4. Trace Exchange Formats

4.1. XML Representation

 The XML format has been designed to keep all information associated
 with SNMP messages. The format is specified in RELAX NG compact
 notation [OASISRNC]. Freely available tools such as trang [8] can be
 used to convert RELAX NG compact syntax to other XML schema
 notations.

 The XML format can represent SNMPv1, SNMPv2c, and SNMPv3 messages.
 In case a new version of SNMP is introduced in the future or existing
 SNMP versions are extended in ways that require changes to the XML
 format, a new XML format with a different namespace needs to be
 defined (e.g., by incrementing the version number included in the
 namespace URI).

Relax NG grammar for the XML SNMP trace format.
#
Published as part of RFC 5345.

Schoenwaelder Informational [Page 12]

RFC 5345 SNMP Traffic Measurements October 2008

default namespace = "urn:ietf:params:xml:ns:snmp-trace-1.0"

start =
 element snmptrace {
 packet.elem*
 }

packet.elem =
 element packet {
 element time-sec { xsd:unsignedInt },
 element time-usec { xsd:unsignedInt },
 element src-ip { ipaddress.type },
 element src-port { xsd:unsignedInt },
 element dst-ip { ipaddress.type },
 element dst-port { xsd:unsignedInt },
 snmp.elem
 }

snmp.elem =
 element snmp {
 length.attrs?,
 message.elem
 }

message.elem =
 element version { length.attrs, xsd:int },
 element community { length.attrs, xsd:hexBinary },
 pdu.elem

message.elem |=
 element version { length.attrs, xsd:int },
 element message {
 length.attrs,
 element msg-id { length.attrs, xsd:unsignedInt },
 element max-size { length.attrs, xsd:unsignedInt },
 element flags { length.attrs, xsd:hexBinary },
 element security-model { length.attrs, xsd:unsignedInt }
 },
 usm.elem?,
 element scoped-pdu {
 length.attrs,
 element context-engine-id { length.attrs, xsd:hexBinary },
 element context-name { length.attrs, xsd:string },
 pdu.elem
 }

usm.elem =
 element usm {

Schoenwaelder Informational [Page 13]

RFC 5345 SNMP Traffic Measurements October 2008

 length.attrs,
 element auth-engine-id { length.attrs, xsd:hexBinary },
 element auth-engine-boots { length.attrs, xsd:unsignedInt },
 element auth-engine-time { length.attrs, xsd:unsignedInt },
 element user { length.attrs, xsd:hexBinary },
 element auth-params { length.attrs, xsd:hexBinary },
 element priv-params { length.attrs, xsd:hexBinary }
 }

pdu.elem =
 element trap {
 length.attrs,
 element enterprise { length.attrs, oid.type },
 element agent-addr { length.attrs, ipv4address.type },
 element generic-trap { length.attrs, xsd:int },
 element specific-trap { length.attrs, xsd:int },
 element time-stamp { length.attrs, xsd:int },
 element variable-bindings { length.attrs, varbind.elem* }
 }

pdu.elem |=
 element (get-request | get-next-request | get-bulk-request |
 set-request | inform-request | snmpV2-trap |
 response | report) {
 length.attrs,
 element request-id { length.attrs, xsd:int },
 element error-status { length.attrs, xsd:int },
 element error-index { length.attrs, xsd:int },
 element variable-bindings { length.attrs, varbind.elem* }
 }

varbind.elem =
 element varbind { length.attrs, name.elem, value.elem }

name.elem =
 element name { length.attrs, oid.type }

value.elem =
 element null { length.attrs, empty } |
 element integer32 { length.attrs, xsd:int } |
 element unsigned32 { length.attrs, xsd:unsignedInt } |
 element counter32 { length.attrs, xsd:unsignedInt } |
 element counter64 { length.attrs, xsd:unsignedLong } |
 element timeticks { length.attrs, xsd:unsignedInt } |
 element ipaddress { length.attrs, ipv4address.type } |
 element octet-string { length.attrs, xsd:hexBinary } |
 element object-identifier { length.attrs, oid.type } |
 element opaque { length.attrs, xsd:hexBinary } |

Schoenwaelder Informational [Page 14]

RFC 5345 SNMP Traffic Measurements October 2008

 element no-such-object { length.attrs, empty } |
 element no-such-instance { length.attrs, empty } |
 element end-of-mib-view { length.attrs, empty }

The blen attribute indicates the number of octets used by the BER
encoded tag / length / value triple. The vlen attribute indicates
the number of octets used by the BER encoded value alone.

length.attrs =
 (attribute blen { xsd:unsignedShort },
 attribute vlen { xsd:unsignedShort })?

oid.type =
 xsd:string {
 pattern =
 "(([0-1](\.[1-3]?[0-9]))|(2.(0|([1-9]\d*))))" ˜
 "(\.(0|([1-9]\d*))){0,126}"
 }

The types below are for IP addresses. Note that SNMP’s buildin
IpAddress type only supports IPv4 addresses; IPv6 addresses are only
introduced to cover SNMP over IPv6 endpoints.

ipv4address.type =
 xsd:string {
 pattern =
 "((0|(1[0-9]{0,2})" ˜
 "|(2(([0-4][0-9]?)|(5[0-5]?)|([6-9]?)))|([3-9][0-9]?))\.){3}" ˜
 "(0|(1[0-9]{0,2})" ˜
 "|(2(([0-4][0-9]?)|(5[0-5]?)|([6-9]?)))|([3-9][0-9]?))"
 }

ipv6address.type =
 xsd:string {
 pattern =
 "(([0-9a-fA-F]+:){7}[0-9a-fA-F]+)|" ˜
 "(([0-9a-fA-F]+:)*[0-9a-fA-F]+)?::(([0-9a-fA-F]+:)*[0-9a-fA-F]+)?"
 }

ipaddress.type = ipv4address.type | ipv6address.type

 The following example shows an SNMP trace file in XML format
 containing an SNMPv1 get-next-request message for the OID
 1.3.6.1.2.1.1.3 (sysUpTime) and the response message returned by the
 agent.

Schoenwaelder Informational [Page 15]

RFC 5345 SNMP Traffic Measurements October 2008

 <snmptrace xmlns="urn:ietf:params:xml:ns:snmp-trace-1.0">
 <packet>
 <time-sec>1147212206</time-sec>
 <time-usec>739609</time-usec>
 <src-ip>192.0.2.1</src-ip>
 <src-port>60371</src-port>
 <dst-ip>192.0.2.2</dst-ip>
 <dst-port>12345</dst-port>
 <snmp blen="42" vlen="40">
 <version blen="3" vlen="1">1</version>
 <community blen="8" vlen="6">7075626c6963</community>
 <get-next-request blen="29" vlen="27">
 <request-id blen="6" vlen="4">1804289383</request-id>
 <error-status blen="3" vlen="1">0</error-status>
 <error-index blen="3" vlen="1">0</error-index>
 <variable-bindings blen="15" vlen="13">
 <varbind blen="13" vlen="11">
 <name blen="9" vlen="7">1.3.6.1.2.1.1.3</name>
 <null blen="2" vlen="0"/>
 </varbind>
 </variable-bindings>
 </get-next-request>
 </snmp>
 </packet>
 <packet>
 <time-sec>1147212206</time-sec>
 <time-usec>762891</time-usec>
 <src-ip>192.0.2.2</src-ip>
 <src-port>12345</src-port>
 <dst-ip>192.0.2.1</dst-ip>
 <dst-port>60371</dst-port>
 <snmp blen="47" vlen="45">
 <version blen="3" vlen="1">1</version>
 <community blen="8" vlen="6">7075626c6963</community>
 <response blen="34" vlen="32">
 <request-id blen="6" vlen="4">1804289383</request-id>
 <error-status blen="3" vlen="1">0</error-status>
 <error-index blen="3" vlen="1">0</error-index>
 <variable-bindings blen="20" vlen="18">
 <varbind blen="18" vlen="16">
 <name blen="10" vlen="8">1.3.6.1.2.1.1.3.0</name>
 <unsigned32 blen="6" vlen="4">26842224</unsigned32>
 </varbind>
 </variable-bindings>
 </response>
 </snmp>
 </packet>
 </snmptrace>

Schoenwaelder Informational [Page 16]

RFC 5345 SNMP Traffic Measurements October 2008

4.2. CSV Representation

 The comma-separated values (CSV) format has been designed to capture
 only the most relevant information about an SNMP message. In
 situations where all information about an SNMP message must be
 captured, the XML format defined above must be used. The CSV format
 uses the following fields:

 1. Timestamp in the format seconds.microseconds since 1970, for
 example, "1137764769.425484".

 2. Source IP address in dotted quad notation (IPv4), for example,
 "192.0.2.1", or compact hexadecimal notation (IPv6), for
 example, "2001:DB8::1".

 3. Source port number represented as a decimal number, for example,
 "4242".

 4. Destination IP address in dotted quad notation (IPv4), for
 example, "192.0.2.1", or compact hexadecimal notation (IPv6),
 for example, "2001:DB8::1".

 5. Destination port number represented as a decimal number, for
 example, "161".

 6. Size of the SNMP message (a decimal number) counted in octets,
 for example, "123". The size excludes all transport, network,
 and link-layer headers.

 7. SNMP message version represented as a decimal number. The
 version 0 stands for SNMPv1, 1 for SNMPv2c, and 3 for SNMPv3,
 for example, "3".

 8. SNMP protocol operation indicated by one of the keywords get-
 request, get-next-request, get-bulk-request, set-request, trap,
 snmpV2-trap, inform-request, response, report.

 9. SNMP request-id in decimal notation, for example, "1511411010".

 10. SNMP error-status in decimal notation, for example, "0".

 11. SNMP error-index in decimal notation, for example, "0".

 12. Number of variable-bindings contained in the varbind-list in
 decimal notation, for example, "5".

 13. For each varbind in the varbind list, three output elements are
 generated:

Schoenwaelder Informational [Page 17]

RFC 5345 SNMP Traffic Measurements October 2008

 1. Object name given as object identifier in dotted decimal
 notation, for example, "1.3.6.1.2.1.1.3.0".

 2. Object base type name or exception name, that is one of the
 following: null, integer32, unsigned32, counter32,
 counter64, timeticks, ipaddress, octet-string, object-
 identifier, opaque, no-such-object, no-such-instance, and
 end-of-mib-view.

 3. Object value is printed as a number if the underlying base
 type is numeric. An IPv4 addresses is rendered in the
 dotted quad notation and an IPv6 address is rendered in the
 usual hexadecimal notation. An octet string value is
 printed in hexadecimal format while an object identifier
 value is printed in dotted decimal notation. In case of an
 exception, the object value is empty.

 Note that the format does not preserve the information needed to
 understand SNMPv1 traps. It is therefore recommended that
 implementations be able to convert the SNMPv1 trap format into the
 trap format used by SNMPv2c and SNMPv3, according to the rules
 defined in [RFC3584]. The activation of trap format conversion
 should be the user’s choice.

 The following example shows an SNMP trace file in CSV format
 containing an SNMPv1 get-next-request message for the OID
 1.3.6.1.2.1.1.3 (sysUpTime) and the response message returned by the
 agent. (Note that the example uses backslash line continuation marks
 in order to fit the example into the RFC format. Backslash line
 continuations are not part of the CSV format.)

 1147212206.739609,192.0.2.1,60371,192.0.2.2,12345,42,1,\
 get-next-request,1804289383,0,0,1,1.3.6.1.2.1.1.3,null,
 1147212206.762891,192.0.2.2,12345,192.0.2.1,60371,47,1,\
 response,1804289383,0,0,1,1.3.6.1.2.1.1.3.0,timeticks,26842224

5. Security Considerations

 SNMP traffic traces usually contain sensitive information. It is
 therefore necessary to (a) remove unwanted information and (b) to
 anonymize the remaining necessary information before traces are made
 available for analysis. It is recommended to encrypt traces when
 they are archived.

 Implementations that generate CSV or XML traces from raw pcap files
 should have an option to suppress or anonymize values. Note that
 instance identifiers of tables also include values, and it might
 therefore be necessary to suppress or anonymize (parts of) the

Schoenwaelder Informational [Page 18]

RFC 5345 SNMP Traffic Measurements October 2008

 instance identifiers. Similarly, the packet and message headers
 typically contain sensitive information about the source and
 destination of SNMP messages as well as authentication information
 (community strings or user names).

 Anonymization techniques can be applied to keep information in traces
 that could otherwise reveal sensitive information. When using
 anonymization, values should only be kept when the underlying data
 type is known and an appropriate anonymization transformation is
 available (filter-in principle). For values appearing in instance
 identifiers, it is usually desirable to maintain the lexicographic
 order. Special anonymization transformations that preserve this
 property have been developed, although their anonymization strength
 is usually reduced compared to transformations that do not preserve
 lexicographic ordering [HS06].

 The meta data associated with traces and in particular information
 about the organization owning a network and the description of the
 measurement point in the network topology where a trace was collected
 may be misused to decide/pinpoint where and how to attack a network.
 Meta data therefore needs to be properly protected.

6. IANA Considerations

 Per this document, IANA has registered a URI for the SNMP XML trace
 format namespace in the IETF XML registry [RFC3688]. Following the
 format in RFC 3688, the following registration has been made:

 URI: "urn:ietf:params:xml:ns:snmp-trace-1.0"

 Registrant Contact: The NMRG of the IRTF.

 XML: N/A, the URI is an XML namespace.

7. Acknowledgements

 This document was influenced by discussions within the Network
 Management Research Group (NMRG). Special thanks to Remco van de
 Meent for writing the initial Perl script that lead to the
 development of the snmpdump software package and Matus Harvan for his
 work on lexicographic order preserving anonymization transformations.
 Aiko Pras contributed ideas to Section 3 while David Harrington
 helped to improve the readability of this document.

 Last call reviews have been received from Bert Wijnen, Aiko Pras,
 Frank Strauss, Remco van de Meent, Giorgio Nunzi, Wes Hardacker, Liam
 Fallon, Sharon Chisholm, David Perkins, Deep Medhi, Randy Bush, David
 Harrington, Dan Romascanu, Luca Deri, and Marc Burgess. Karen R.

Schoenwaelder Informational [Page 19]

RFC 5345 SNMP Traffic Measurements October 2008

 Sollins reviewed the document for the Internet Research Steering
 Group (IRSG). Jari Arkko, Pasi Eronen, Chris Newman, and Tim Polk
 provided helpful comments during the Internet Engineering Steering
 Group (IESG) review.

 Part of this work was funded by the European Commission under grant
 FP6-2004-IST-4-EMANICS-026854-NOE.

8. References

8.1. Normative References

 [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Structure of Management Information Version 2 (SMIv2)",
 STD 58, RFC 2578, April 1999.

 [OASISRNG] Clark, J. and M. Makoto, "RELAX NG Specification",
 OASIS Committee Specification, December 2001.

 [OASISRNC] Clark, J., "RELAX NG Compact Syntax", OASIS Committee
 Specification, November 2002.

 [RFC3584] Frye, R., Levi, D., Routhier, S., and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-standard Network Management Framework",
 BCP 74, RFC 3584, August 2003.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

8.2. Informative References

 [RFC1052] Cerf, V., "IAB Recommendations for the development of
 Internet network management standards", RFC 1052,
 April 1998.

 [RFC2579] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Textual Conventions for SMIv2", STD 58, RFC 2579,
 April 1999.

 [RFC3418] Presuhn, R., Ed., "Management Information Base (MIB) for
 the Simple Network Management Protocol (SNMP)", STD 62,
 RFC 3418, December 2002.

 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, June 2000.

Schoenwaelder Informational [Page 20]

RFC 5345 SNMP Traffic Measurements October 2008

 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC4022] Raghunarayan, R., "Management Information Base for the
 Transmission Control Protocol (TCP)", RFC 4022,
 March 2005.

 [PDMQ04] Pras, A., Drevers, T., van de Meent, R., and D. Quartel,
 "Comparing the Performance of SNMP and Web Services based
 Management", IEEE Transactions on Network and Service
 Management 1(2), November 2004.

 [Pat01] Pattinson, C., "A Study of the Behaviour of the Simple
 Network Management Protocol", Proc. 12th IFIP/IEEE
 Workshop on Distributed Systems: Operations and
 Management , October 2001.

 [DSR01] Du, X., Shayman, M., and M. Rozenblit, "Implementation
 and Performance Analysis of SNMP on a TLS/TCP Base",
 Proc. 7th IFIP/IEEE International Symposium on Integrated
 Network Management , May 2001.

 [CT04] Corrente, A. and L. Tura, "Security Performance Analysis
 of SNMPv3 with Respect to SNMPv2c", Proc. 2004 IEEE/IFIP
 Network Operations and Management Symposium , April 2004.

 [PFGL04] Pavlou, G., Flegkas, P., Gouveris, S., and A. Liotta, "On
 Management Technologies and the Potential of Web
 Services", IEEE Communications Magazine 42(7), July 2004.

 [SM99] Sprenkels, R. and J. Martin-Flatin, "Bulk Transfers of
 MIB Data", Simple Times 7(1), March 1999.

 [Mal02] Malowidzki, M., "GetBulk Worth Fixing", Simple
 Times 10(1), December 2002.

 [HS06] Harvan, M. and J. Schoenwaelder, "Prefix- and
 Lexicographical-order-preserving IP Address
 Anonymization", IEEE/IFIP Network Operations and
 Management Symposium NOMS 2006, April 2006.

 [XFA02] Xu, J., Fan, J., and M. Ammar, "Prefix-Preserving IP
 Address Anonymization: Measurement-based Security
 Evaluation and a New Cryptography-based Scheme", 10th
 IEEE International Conference on Network
 Protocols ICNP’02, November 2002.

Schoenwaelder Informational [Page 21]

RFC 5345 SNMP Traffic Measurements October 2008

 [FXAM04] Fan, J., Xu, J., Ammar, M., and S. Moon, "Prefix-
 Preserving IP Address Anonymization", Computer
 Networks 46(2), October 2004.

 [PAPL06] Pang, R., Allman, M., Paxson, V., and J. Lee, "The Devil
 and Packet Trace Anonymization", Computer Communication
 Review 36(1), January 2006.

 [RW07] Ramaswamy, R. and T. Wolf, "High-Speed Prefix-Preserving
 IP Address Anonymization for Passive Measurement
 Systems", IEEE Transactions on Networking 15(1),
 February 2007.

URIs

 [1] <http://en.wikipedia.org/wiki/Pcap>

 [2] <http://www.tcpdump.org/>

 [3] <http://www.wireshark.org/>

 [4] <http://www.datcat.org/>

 [5] <https://svn.eecs.jacobs-university.de/svn/schoenw/src/snmpdump>

 [6] <http://xmlsoft.org/XSLT/>

 [7] <http://perl-xml.sourceforge.net/faq/>

 [8] <http://www.relaxng.org/>

Author’s Address

 Juergen Schoenwaelder
 Jacobs University Bremen
 Campus Ring 1
 28725 Bremen
 Germany

 Phone: +49 421 200-3587
 EMail: j.schoenwaelder@jacobs-university.de

Schoenwaelder Informational [Page 22]

RFC 5345 SNMP Traffic Measurements October 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78 and at http://www.rfc-editor.org/copyright.html,
 and except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Schoenwaelder Informational [Page 23]

